EXERCISE 13.1

Q.1 Divide an arc of any length

- (i) Into three equal parts
- (ii) Into four equal parts
- (iii) Into six equal parts

Solution:

(i) Three equal parts

Steps of Construction:

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- iii. Draw right bisectors \overrightarrow{PQ} and \overrightarrow{LM} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into three equal central angles cutting the arc AC at points D and E.
- vi. Arcs of same radii corresponding to equal central angles are equal. Thus three equal parts of the arc ABC are $\widehat{mAD} = \widehat{mDE} = \widehat{mEC}$.

(ii) Four equal parts

Steps of Construction:

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- iii. Draw right bisectors \overrightarrow{PQ} and \overrightarrow{LM} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into four equal central angles cutting the arc AC at points D, E and F.
- vi. Arcs of same radii corresponding to equal central angles are equal. Thus four equal parts of the arc ABC

are $\widehat{\text{MAD}} = \widehat{\text{mDE}} = \widehat{\text{mEF}} = \widehat{\text{mFC}}$.

(iii)Six equal parts

Steps of Construction:

- i. Take an arc AC of any length.
- ii. Take any point B on the arc AC and join A to B and B to C.
- and BC respectively, which meet each other at point "O". Point O is the centre of circle having the arc AC.
- iv. Join end points of arc AC with centre O to form central angle AOC.
- v. Measure the central angle and divide it into six equal central angles cutting the arc AC at points D, E, F, G and H.

Arcs of same radii corresponding to equal central angles are equal. Thus six equal parts of the arc ABC are $\widehat{mAD} = \widehat{mDE} = \widehat{mEF} = \widehat{mFG} = \widehat{mGH} = \widehat{mHC}$

Q.2 Practically find the centre of an arc ABC

Steps of Construction:

- i. We draw an arc ABC of any length.
- ii. We draw line segments \overline{AB} and \overline{BC} .
- iii. We draw right bisectors of \overline{AB} and \overline{BC} , intersecting each other at point O.
- iv. Point 'O' is the required centre of arc ABC.
- Q. 3 (i) If $|\overline{AB}| = 3cm$ and $|\overline{BC}| = 4cm$ arc the lengths of two chords of an arc, then locate the centre of the arc.

Steps of Construction:

- i. We draw $|\overline{AB}| = 3cm$ and $|\overline{BC}| = 4cm$, inclined at any angle.
- ii. We draw right bisectors of \overline{AB} and \overline{BC} intersecting each other at point O, which is the required centre of arc ABC.
- iii. Taking centre 'O', we draw an arc ABC of radius $\overline{mOA} = \overline{mOB} = \overline{mOC}$.
- (ii) If $|\overline{AB}| = 3.5$ cm and $|\overline{BC}| = 5$ cm arc the lengths of two chords of an arc, then locate the centre of the arc.

Steps of Construction:

- i. We draw $|\overline{AB}| = 3.5cm$ and $|\overline{BC}| = 5cm$, inclined at any angle.
- ii. We draw right bisectors of \overline{AB} and \overline{BC} intersecting each other at point O, which is the required centre of arc ABC.
- iii. Taking centre 'O', we draw an arc ABC of radius $\overline{mOA} = \overline{mOB} = \overline{mOC}$.
- 4. For an arc draw two perpendicular bisectors of the chords \overline{PQ} and \overline{QR} of this arc, construct a circle through P, Q and R.

Steps of construction:

- i. We take an arc PQR of any length.
- ii. We take two chords \overline{PQ} and \overline{QR} of any lengths of arc PQR.
- iii. We draw right bisectors of \overline{PQ} and \overline{QR} , intersecting each other at point 'O', which is the centre of arc PQR.
- iv. Taking 'O' as centre, we complete the required circle passing through P, Q and R.
- 5. Describe a circle of radius 5 cm passing through points A and B, 6 cm apart. Also find distance from the centre to line AB.

Steps of Construction:

- i. We draw a line segment \overline{AB} of length 6cm.
- ii. We draw right bisector of \overline{AB} intersecting it at point 'C'.
- iii. From points A and B we draw arcs of radius 5cm each, intersecting the bisector at point O.
- iv. Taking 'O' as centre we draw a circle of radius 5 cm passing through the points A and B.
- v. To find the distance of centre O from \overline{AB} , we consider right angle ΔOAC .

By Pythagorean Theorem

$$(m\overline{OC})^2 + (m\overline{AC})^2 = (m\overline{OA})^2$$

$$(m\overline{OC})^2 + (3)^2 = (5)^2$$

$$\left(m\overline{OC}\right)^2 = 25 - 9$$

$$(m\overline{OC})^2 = 16$$

$$= 4 \text{ cm } m\overline{OC}$$

6. If $|\overline{AB}| = 4cm$ and $|\overline{BC}| = 6cm$, such that \overline{AB} is perpendicular to \overline{BC} , construct a circle through points A, B and C. Also measure its radiu

Steps of construction:

- i. We draw \overline{AB} and \overline{BC} , 4 cm and 6 cm long respectively, perpendicular to each other.
- ii. We draw right bisectors of \overline{AB} and \overline{BC} , intersecting each other at point 'O'.
- iii. Taking 'O' as centre we draw a circle of radius $m\overline{OA} = m\overline{OB} = m\overline{OC}$ passing through the points A, B and C.
- iv. The radius of this circle is measured to be 3.6 cm.
- v. By Pythagoras theorem $r^2 = 2^2 + 3^2$

$$r_2^2 = 2^2 + 3$$

$$r^2 = 4 + 9$$

$$\sqrt{r^2} = \sqrt{13}$$

$$r = 3.6cm$$