EXERCISE 3.2

Q.1	If	y	varies	directly	as	х,	and	v	=	8
when	X :	= 2	, find	•						

- (i) y in terms of x
- (ii) y when x = 5
- (iii) x when y = 28

Solution:
$$y = x$$
 $y = 8$ $y = 7$ $x = 7$ $y = 28$ $y = 28$

(i)
$$y \propto x$$

 $y = kx$ (i)

To find k,

Put
$$y = 8$$
 and $x = 2$ in equation (i)
 $8 = k$ (2)
 $\frac{8}{2} = k$
 $4 = k \implies k = 4$

(ii) To find y,

Put
$$k = 4$$
 in equation (i)
 $y = kx$

$$y = 4x$$
(ii)

Now Put
$$x = 5$$
 in equation (ii)
 $y = 4x$
 $y = 4(5)$
 $y = 20$

(iii) To find x,

Put
$$y = 28$$
 in equation (ii)
 $y = 4x$
 $28=4(x)$
 $28=4(x)$
 $7 = x \implies x = 7$

- Q.2 If $y \propto x$, and y = 7 when x = 3 find
- (i) y in terms of x
- (ii) x when y = 35 and y when x = 18 Solution:

$$y = 7$$

$$x = 3$$

$$y = 3$$

$$y = 35$$

$$y = 35$$

$$y = 7$$

(i)
$$y \propto x$$

 $y = kx$ (i)

To find k,

Put y = 7 and x = 3 in equation (i)

$$7 = k(3)$$

$$\frac{7}{3} = k \implies k = \frac{7}{3}$$

Put it in equation (i)

$$y = kx$$

$$y = \frac{7}{3}x \dots (ii)$$

To find x,

Put
$$y = 35$$
 in equation (ii)

$$y = \frac{7}{3}x$$

$$35 = \frac{7}{3}x$$

$$\frac{3 \times 35}{7} = x$$

$$3 \times 5 = x$$

$$15 = x \implies x = 15$$

To find y,

Put
$$k = \frac{7}{3}$$
 and $x = 18$ in equation (i)
 $y = kx$
 $y = \frac{7}{3}(\cancel{18})$
 $y = 7(6)$

Q.3 If $R \propto T$ and R = 5 when T = 8, find the equation connecting R and T. Also find R. when T = 64 and T when R = 20.

Solution:
$$R = T$$
 $R = 5$ $T = 8$ $R = 7$ $T = 64$ $R = 20$ $T = 7$

$$R \propto T$$

 $R = KT$ (i)

To find k,

Put
$$R = 5$$
 and $T = 8$ in equation (i) $5 = K(8)$

$$\frac{5}{8} = k \implies k = \frac{5}{8}$$

Put
$$k = \frac{5}{8}$$
 in equation (i)

R=kT

$$R = \frac{5}{8}T$$
(ii)

To find R,

Put T = 64 in equation (ii)

$$R = \frac{5}{8}T$$

$$R = \frac{5}{8} \left(\frac{8}{64} \right)$$

$$R = 5(8)$$

$$R = 40$$
To find T ,

Put
$$K = \frac{5}{8}$$
 and $R = 20$ in equation (i)
 $R = KT$

$$20 = \frac{5}{8}(T)$$

$$T = \frac{\cancel{20} \times 8}{\cancel{5}}$$

$$4 \times 8 = T$$

$$32 = T \implies \boxed{T = 32}$$

If $R \propto T^2$ and R = 8 when T = 3, find R when T = 6.

Solution:
$$R = T^2$$
 $R = 8$ $T = 6$ $R = 7$ $T = 6$ $R = kT^2$ (i)

To find k,

Put R = 8 and T = 3 in equation (i)

$$8 = k(3)^{2}$$

$$8 = k(9)$$

$$\frac{8}{9} = k \implies k = \frac{8}{9}$$

To find R,

Put
$$k = \frac{8}{9}$$
 and $T = 6$ in equation (i)
 $R = kT^2$

$$R = \frac{8}{9}(6)^{2}$$

$$R = \frac{8(\cancel{36})}{\cancel{9}}$$

$$R = 8(4) \Rightarrow R = 32$$

 $V \propto R^3$ and V = 5 when R = 3, find R, when V = 625.

Solution:
$$V \propto R^3$$
 $V = 5$ $R = ?$ $V = 625$ $V \propto R^3$ $V = kR^3$ (i)

To find k,

Put V = 5 and R = 3 in equation (i)

$$5 = k (3^{3})$$

$$5 = k (27)$$

$$\frac{5}{27} = k \implies k = \frac{5}{27}$$
Put $k = \frac{5}{27}$ in equation (i)

$$V = kR^{3}$$

$$V = \frac{5}{27}R^{3}$$
.....(ii)

To find R,

Now put
$$V = 625$$
 in equation (ii)

$$(625) = \frac{5}{27}R^3$$

$$\frac{125}{\cancel{5}} = R^3$$

$$27 \times 125 = R^3$$

$$R^3 = 3^3 \times 5^3$$

$$R^3 = (3 \times 5)^3$$

$$R^3 = (15)^3$$
Taking cube root of both side

Taking cube root of both sides $\sqrt[3]{R^3} = \sqrt[3]{15^3}$

$$R^{3\times\frac{1}{3}} = 15^{3\times\frac{1}{3}}$$

$$R = 15$$

Q.6 If w varies directly as u^3 and w = 81 when u = 3. Find w, when u = 5.

Solution:

$$\begin{array}{c|c}
\hline
w & w & 1 \\
\hline
w & w & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
w & 0 & 1 \\
u & 0 & 1
\end{array}$$

To find k,

Put
$$w = 81$$
 and $u = 3$ in equation (i)
 $81 = k(3)^3$
 $81 = k(27)$
 $\frac{81}{27} = k$
 $3 = k \implies \boxed{k = 3}$
Put $k = 3$ in equation (i)
 $w = ku^3$
 $w = 3u^3$(ii)

To find w,

Now put
$$u = 5$$
 in equation (ii)

$$w = 3(5)^{3}$$

$$w = 3(125)$$

$$w = 375$$

Q.7 If y varies inversely as x and y = 7 when x = 2, find y, when x = 126.

Solution:

on:
$$y \propto \frac{1}{x} \quad y = 7$$
$$x = 2 \quad x = 126$$
$$y \propto \frac{1}{x}$$
$$y = \frac{k}{x}$$
....(i)

To find k,

Put y = 7 and x = 2
$$7 = \frac{k}{2}$$

$$7 \times 2 = k$$

$$14 = k \implies k = 14$$

Put k = 14 in equation (i) $y = \frac{k}{x} = \frac{14}{x}$ $\Rightarrow y = \frac{14}{x}$(ii) To find y,

Now put x = 126 in equation (ii)

$$y = \frac{14}{x} = \frac{14}{126} = \frac{\cancel{14}^{1}}{\cancel{126}^{9}}$$

$$y = \frac{1}{9}$$

Q.8 If $y \propto \frac{1}{x}$ and y = 4 when x = 3, find x

when y = 24.

To find k,

Put y = 4 and x = 3 in equation (i)

$$4 = \frac{k}{3}$$

$$4 \times 3 = k$$

$$12 = k \implies k = 12$$

Put k = 12 in equation (i)

$$y = \frac{k}{x}$$

$$y = \frac{12}{x}$$
....(ii)

To find x,

Now put y = 24 in equation (ii)

$$24 = \frac{12}{x}$$

$$24x = 12$$

$$x = \frac{12}{24} = \frac{12}{24}$$

$$x = \frac{1}{24} = \frac{1}{24}$$

Q.9 If
$$w \approx \frac{1}{z}$$
 and $w = 5$ when $z = 7$, find w when $z = \frac{175}{4}$

Solution:
$$w = \frac{1}{z}$$
 $w = 5$ $z = 7$ $w = 7$ $z = \frac{175}{4}$

$$w \propto \frac{1}{z}$$
 (given)
 $w = \frac{k}{z}$ (i)

To find k,

Put w = 5 and z = 7 in equation (i)

$$5 = \frac{k}{7}$$

$$5 \times 7 = k$$

$$35 = k \implies k = 35$$

Put K = 35 in equation (i)

$$w = \frac{k}{z} = \frac{35}{z} \Rightarrow w = \frac{35}{z}$$
....(ii)

To find w,

Now put
$$z = \frac{175}{4}$$
 in equation (ii)

$$w = \frac{35}{z} = 35 \div z$$

$$w = 35 \div \frac{175}{4}$$

$$w = 35 \times \frac{4}{175}$$

$$w = \frac{140}{175} 351 \times \frac{4}{1755}$$

$$w = \frac{4}{5}$$

Q.10 $A \propto \frac{1}{r^2}$ and A = 2 when r = 3, find r when A = 72.

To find k,

Put A = 2 and r = 3 in equation (i)

$$2 = \frac{k}{(3)^2}$$

$$2 = \frac{k}{9}$$

$$2 \times 9 = k$$

$$18 = k \implies \boxed{k = 18}$$

Put k = 18 in equation (i)

$$A = \frac{k}{r^2}$$

$$A = \frac{18}{r^2}$$
....(ii)

To find r,

Now put A = 72 in equation (ii)

$$72 = \frac{18}{r^2}$$

$$72 r^2 = 18$$

$$\mathbf{r^2} = \frac{18}{72}$$

$$r^2 = \frac{1}{4}$$

Taking square root of both sides

$$\sqrt{r \not =} = \pm \sqrt{\frac{1}{4}}$$

$$r = \pm \frac{1}{2}$$

Q.11 $a \propto \frac{1}{b^2}$ and a = 3 when b = 4, find a, when b = 8.

Solution: $a \propto \frac{1}{b^2}$ a = 3 a = ? b = 8

$$a \propto \frac{1}{b^2}$$

$$a = \frac{k}{b^2} \dots (i)$$

To find k,

Put a = 3 and b = 4 in equation (i)

$$3 = \frac{k}{(4)^2}$$

$$3 = \frac{k}{16}$$

$$3 \times 16 \text{ k}$$

$$48 = k \Rightarrow \boxed{k = 48}$$

Put K = 48 in equation(i)

$$a = \frac{k}{b^2} \Rightarrow a = \frac{48}{b^2}$$
....(ii)

To find a,

Now, put b = 8 in equation(ii)

$$a = \frac{48}{b^2} = \frac{48}{(8)^2} = \frac{48}{64}$$

$$a = \frac{3}{4}$$

Q.12 $\vee \propto \frac{1}{r^3}$ and V = 5 when r = 3, find V

when r = 6 and r when V = 320.

Solution:

To find k,

Put V = 5 and r = 3 in equation (i)

$$5 = \frac{k}{(3)^3}$$

$$5 = \frac{k}{27}$$

$$5 \times 27 = k \implies k = 135$$

Put k = 135 in equation(i)

$$V = \frac{135}{r^3}$$
....(ii)

To find V, Put r = 6 in equation (ii)

$$V = \frac{135}{(6)^3} = \frac{135}{216}$$

$$V = \frac{5}{8}$$
 (Dividing by 27)

To find r, put v = 320 in equation (ii) $V = \frac{135}{x^3}$ $320 = \frac{135}{r^3}$ $r^3 = \frac{135}{320} = \frac{27}{64}$ $r^3 = \frac{3^3}{4^3}$ $r^3 = \left(\frac{3}{4}\right)^3$ taking cube root $\sqrt[3]{r^3} = \sqrt[3]{\left(\frac{3}{4}\right)^3}$

Q.13 $m \propto \frac{1}{n^3}$ and m = 2 when n = 4 find m when n = 6 and n when m = 432. **Solution:**

$$\begin{bmatrix} m \propto \frac{1}{n^3} \end{bmatrix} \begin{bmatrix} m = 2 \\ n = 4 \end{bmatrix} \begin{bmatrix} m = ? \\ n = 6 \end{bmatrix} \begin{bmatrix} n = ? \\ m = 432 \end{bmatrix}$$

$$m \propto \frac{1}{n^3}$$

$$m = \frac{k}{n^3} \qquad (i)$$

To find k,

Put m = 2 and n = 4 in equation (i)

$$2 = \frac{k}{(4)^3}$$

$$2 = \frac{K}{64}$$

$$2 \times 64 = k$$

$$128 = k \implies \boxed{k = 128}$$

$$128 \text{ in equation}$$

Put k = 128 in equation(i)

$$m = \frac{128}{n^3}$$
....(ii)

To find m,

put n = 6 in equation (ii)

$$m = \frac{128}{(6)^3} = \frac{128}{216} = \frac{32}{54} = \frac{16}{27}$$

$$m = \frac{16}{16}$$

$$m = \frac{16}{27}$$

To find n,

Put m = 432 in equation (ii)

$$m = \frac{128}{n^3}$$

$$432 = \frac{128}{n^3}$$

$$n^3 = \frac{128}{432} \text{ (dividing by 16)}$$

$$n^3 = \frac{8}{27}$$

$$n^3 = \frac{2^2}{3^3}$$

$$n^3 = \left(\frac{2}{3}\right)^3$$

Taking cube of root

$$\sqrt[3]{n^3} = \sqrt[3]{\left(\frac{2}{3}\right)^3}$$

$$n = \frac{2}{3}$$