Exercise 10.2

Q. 1 \overline{AB} and \overline{CD} are two equal chords in a circle with centre O. H and K are respectively the mid points of the chords. Prove that \overline{HK} makes equal angles with \overline{AB} and \overline{CD} .

A circle with centre 'O'. Two chords such that

 $\overline{MAB} = \overline{MCD}$. H and K are mid points of chords AB and CD respectively. H is joined with K

To Prove:

- (i) $m\angle AHK = m\angle CKH$
- (ii) $m\angle BHK = m\angle DKH$

Proof:

Statements		Reasons
In ΔHOK		
$m\overline{OH} = m\overline{OK}$		Two equal chords are equidistant from the center.
·:.	$m\angle 1 = m\angle 2$ (i)	Angles opposite to the equal line segments
And	$m\angle 5 = m\angle 6$ (ii)	Each 90°
	$m\angle 1 + m\angle 5 = m\angle 2 + m\angle 6$	Adding (i) and (ii)
Thus, or	$m\angle DKH = m\angle BHK$ $m\angle BHK = m\angle DKH$ Proved $m\angle AHO = m\angle CKO$ $m\angle 2 + m\angle 4 = m\angle 1 + m\angle 3$	Each 90°
But	$m \angle 2 = m \angle 1$ $m \angle 1 + m \angle 4 = m \angle 1 + m \angle 3$	Proved in (i)
	$m\angle 4 = m\angle 3$	By cancellation property
	m∠AHK = m∠CKH	

Q.2 The radius of a circle is 2.5 cm. \overline{AB} and \overline{CD} are two chords 3.9cm apart. If $\overline{MAB} = 1.4$ cm, then measure the other chord.

Given:

O is the centre of a circle.

- (i) $m\overline{OB} = m\overline{OC} = 2.5cm$
- (ii) $m\overline{AB} = 1.4cm$
- (iii) $m\overline{EF} = 3.9cm$

To Find:

$$m\overline{CD} = ?$$

Construction:

Join O with B and C.

Calculations:

Steps		Reasons	
In ΔOEB		Given	
	$m\overline{EB} = \frac{1}{2}m\overline{AB} = \frac{1}{2}(1.4cm) = 0.7 cm$ (i)		
	$\overline{\text{MOB}} = 2.5 \text{cm}$ (ii)		
	$(m\overline{OB})^2 = (m\overline{OE})^2 + (m\overline{EB})^2$	By Pythagoras theorem in right	
	$(2.5 \text{cm})^2 = (\text{m}\overline{\text{OE}})^2 + (0.7 \text{cm})^2$	angled ΔOEB From (i) and (ii)	
\Rightarrow	$\left(m\overline{OE}\right)^2 = \left(2.5cm\right)^2 - \left(0.7cm\right)^2$		
	$(m\overline{OE})^2 = 6.25cm^2 - 0.49cm^2$		
	$\left(\overline{\text{mOE}}\right)^2 = 5.76\text{cm}^2$		
	$\sqrt{\left(\text{m}\overline{\text{OE}}\right)^2} = \sqrt{5.76\text{cm}^2}$		
Now	$\overline{\text{mOE}} = 2.4\text{cm}$ (iii)		
1.0.,	$m\overline{OF} = m\overline{EF} - m\overline{OE}$		
	$m\overline{OF} = 3.9cm - 2.4cm$		
	$m\overline{OF} = 1.5cm$ (iv)		
In right angled triangle ΔOCF			
	$\left(m\overline{OC}\right)^2 = \left(m\overline{OF}\right)^2 + \left(m\overline{CF}\right)^2$		
\Rightarrow	$(m\overline{CF})^2 = (2.5cm)^2 - (1.5cm)^2$	From (iv)	
	$(m\overline{CF})^2 = 6.25cm^2 - 2.25cm^2$		
	$\left(m\overline{CF}\right)^2 = 4cm^2$		
··	$\sqrt{\left(m\overline{CF}\right)^2} = \sqrt{4cm^2}$		
	$(m\overline{CF}) = 2 cm$ (v)	_ 1 _	
··.	$(m\overline{CD}) = 2(m\overline{CF})$	$\therefore m\overline{CF} = \frac{1}{2}m\overline{CD}$	
	$m\overline{CD} = 2(2cm)$	From (v)	
	$m\overline{CD} = 4cm$		

Q.3. The radii of two intersecting circles are 10cm and 8cm. If the length of their common chord is 6cm then find the distance between the centres. Solution:

Given: Two intersecting circles with centers O and C having radius $m\overline{OA} = 10$ cm,

radius $\overline{MAC} = 8cm$ respectively.

Length of common chord $\overline{MAB} = 6cm$

To Find:

Distance between the centers $m\overline{OC} = ?$

Construction:

Join the point A to the centers O and C. Joint O to C which meets the chord \overline{AB} at its midpoint.

Calculations:

Q.4. Show that greatest chord in a circle is its diameter.

Given: O be the centre of the circle, mBC is central chord and AB be any chord of the circle

To prove: Central chord $m\overline{CB} > Any chord m\overline{AB}$

Construction: Draw $\overline{OM} \perp \overline{AB}$ to make right angled triangle OMB.

Proof:

Statements	Reasons
In right angled triangle OMB	
$\left(m\overline{OB}\right)^2 = \left(m\overline{OM}\right)^2 + \left(m\overline{MB}\right)^2$	By Pythagoras theorem
It means	
$m\overline{OB} > m\overline{MB}$	The length of hypotenuse is greater
$\therefore 2(m\overline{OB}) > 2(m\overline{MB})$	than the length of other two sides.
As $2(m\overline{OB})$ is length of the central chord and	
$2(m\overline{MB})$ is length of the chord \overline{AB} thus,	
Central chord $m\overline{CB} > Any \text{ chord } m\overline{AB}$.	
It means central chord of the circle i.e. diameter is greater than any other chord of th	

It means central chord of the circle i.e. diameter is greater than any other chord of the circle, which proved that the greatest chord in a circle is its diameter.