EXERCISE 10.3

Q.1 Two circles with radii 5cm and 4cm touch each other externally. Draw another circle with radius 2.5cm touching the first pair, externally.

Solution:

Radius of Circle $A = r_1 = 5cm$

Radius of Circle $B = r_2 = 4cm$

Radius of Circle $C = r_3 = 2.5 \text{cm}$

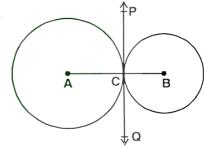
Steps of construction:

- Step 1: Draw a line segment m \overline{PQ} 5cm + 4cm = 9cm long.
- Step 2: Take 'P' as a centre and draw a circle of radius 5cm.
- Step 3: Take 'Q' as a centre and draw a circle of radius 4cm, which intersects the circle of radius 4cm at point x.
- Step 4: Take P as a centre and draw an arc of radius (5cm + 2.5cm = 7.5cm)
- Step 5: Take Q as a centre and draw an arc of radius (4cm+2.5cm=6.5cm), which intersects the previous arc at point R.
- Step 6: Take R as centre and draw a circle of radius 2.5cm which touches externally the circles of centre P and Q at the points Y and Z respectively.
- Q.2 If the distance between the centres of two circles is the sum or the difference of their radii they will touch each other.

Given: Two circles with centre A and B. \overline{AC} and \overline{BC} are radial segments of these circles such that $m\overline{AB} = m\overline{AC} + m\overline{BC}$ or

To Prove: Both circle touch each other.

Construction: Join A to B. Draw a tangent \overrightarrow{PQ} of circle A at point C i.e. $m\angle PCA = 90^{\circ}$



В

r, = 4cm O

Α

 $r_1 = 5 cm$

Proof:

Statements	Reasons
$\overline{\text{mAB}} = \overline{\text{mAC}} + \overline{\text{mBC}}$ (i)	Given
Points A, C and B are collinear such that C is	From (i)
between A and B.	
$m\angle PCA + m\angle PCB = 180^{\circ}$ (ii)	Supplementary angles
As $m \angle PCA = 90^{\circ}$ (iii)	Construction
$\therefore m \angle PCB = 90^{\circ} \qquad \dots $	From (ii) and (iii)
$\overline{PC} \perp \overline{BC}$ at Ci.e. \overline{PQ} is $\perp \overline{BC}$ at C	From (iv)
PQ is also a tangent of circle B	
\overrightarrow{PQ} is common tangent of both circles. i.e.	
Both circles have a common point C.	
Thus both circles touch each other at a point C.	
Similarly the same results can be proved when	
distance between the centers of two circles is	
equal to the difference of their radii	