EXERCISE 11.1

Q.1 In a circle two equal diameters \overline{AB} and \overline{CD} intersect each other. Prove that $\overline{mAD} = \overline{mBC}$.

Given: A circle with centre "O". Two diameters

 \overline{AB} and \overline{BC} , intersecting at point O.

To Prove: $m\overline{AD} = m\overline{BC}$

Construction:

Join A to D and C to B

Q.2. In a circle prove that the arcs between two parallel and equal chords are equal.

Given: A circle with centre O. Two chords AB and CD Such that

 $\overline{AB} \parallel \overline{CD}$ and $m\overline{AB} = m\overline{CD}$

To Prove: $\widehat{mAC} = \widehat{mBD}$

Construction: Join A to D and B to C. Such that \overline{AD} and \overline{CD} intersect

each other at central point O.

Proof:

Statements	Reasons
AD and BC are line segment intersecting at centre O.	
∠AOC and ∠BOD are central angles.	Angle subtended at centre.
m∠AOC = m∠BOD	Vertical angles
$\widehat{\text{mAC}} = \widehat{\text{mBB}}$	Within the same circle arcs opposite
mAC = mBB	to the equal central angles are equal.

Q.3. Give a geometric proof that a pair of bisecting chords are the diameters of a circle.

Given: A circle and two chords \overline{AB} and \overline{CD} bisecting each other at point O. i.e.

 $\overline{\text{mAO}} = \overline{\text{mOB}}$ and $\overline{\text{mCO}} = \overline{\text{mOD}}$

To Prove: Chords \overrightarrow{AB} and \overrightarrow{CD} are diameters.

Proof:

Statements	Reasons
$\overline{\text{mAB}} = \overline{\text{mCD}}$ (i)	Two chords can bisect each other only when they are equal (given)
\therefore O is the mid point of \overrightarrow{AB} and \overrightarrow{CD}	Given
$\overline{MAO} = \overline{MBO} = \frac{1}{2} \overline{MAB}$ (ii)	
$\overline{\text{mDO}} = \overline{\text{mCO}} = \frac{1}{2} \overline{\text{mCD}}$ (iii)	
$\overline{\text{mAO}} = \overline{\text{mBO}} = \overline{\text{mCO}} = \overline{\text{mDO}}$ (iv)	From (i), (ii) and (iii)
The points of circle A, B, C and D are	
equidistant form the fixed point "O".	From (iv)
This fixed pint O is the centre of the circle	By definition
having the points A, B, C and D.	
As chords \overline{AB} and \overline{CD} pass through the centre	
"O" therefore chords \overline{AB} and \overline{CD} are diameters.	

Q.4. If C is the midpoint of an arc ACB in a circle with centre O. Show that line segment OC bisects the chord AB.

Given: A circle with centre "O" ACB is an arc with C as its midpoint and $\widehat{MAC} = \widehat{MCB}$. Center "O" is joined with C such that \overline{OC} meets \overline{AB} at M.

To Prove: $m\overline{AM} = m\overline{BM}$

Construction: Join center "O" with A and B to make central angle AOB.

Proof:	C
Statements	Reasons
∠AOB is central angle	Construction
$\therefore m \angle 1 = m \angle 2 \dots (i)$	C is the midpoint of \widehat{ACB} (Given)
In $\triangle AOM \longleftrightarrow \triangle BOM$ $\overline{OM} \cong \overline{OM}$ $\angle 1 \cong \angle 2$ $\overline{OA} \cong \overline{OB}$ $\triangle AOM \cong \triangle BOM$ $\overline{AM} \cong \overline{BM}$ Hence $\overline{mAM} = \overline{mBM}$	Common Proved Radii of the same Circle $S.A.S \cong S.A.S$ Corresponding sides of congruent triangles.