EXERCISE 12.1

Q.1 Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Given:

A circle with centre "O"

ABCD is a cyclic quadrilateral

To Prove:

 $m\angle B + m\angle D = 180^{\circ}$

 $m\angle BCD + m\angle DAB = 180^{\circ}$

Construction: Join O with A and C

Proof:

Statements		Reasons	
	$m\angle 1 = 2m\angle D(i)$	$\angle 1$, $\angle 2$ are central angles and $\angle D$, $\angle B$ are	
	$m\angle 2 = 2m\angle B(ii)$	circum angles in Arcs	
	$m\angle 1 + m\angle 2 = 2m\angle D + 2m\angle B$	Adding (i) and (ii)	
	$m\angle 1 + m\angle 2 = 2(m\angle D + m\angle B)$		
or	$2(m\angle D + m\angle B) = m\angle 1 + m\angle 2$	By symmetric property	
	$2(m\angle D + m\angle B) = 360^{\circ}$	Sum of all central angles is 360°	
	$m\angle D + m\angle B = \frac{360^{\circ}}{2}$	Dividing by 2	
	$m\angle D + m\angle B = 180^{\circ}$		
Simil	larly m∠BCD + m∠DAB=180°		

 $Q.2\ \mathrm{Show}\ \mathrm{that}\ \mathrm{parallelogram}\ \mathrm{inscribed}\ \mathrm{in}\ \mathrm{a}\ \mathrm{circle}\ \mathrm{will}\ \mathrm{be}\ \mathrm{a}\ \mathrm{rectangle}.$

Given: ABCD is a parallelogram inscribed in the circle with centre "O"

$$m\overline{AB} = m\overline{DC}$$
 and $\overline{AB} \parallel \overline{DC}$

$$m\overline{AD} = m\overline{BC}$$
 and $\overline{AD} \parallel \overline{BC}$

To Prove: ABCD is a rectangle **Construction:** Join A with C

Proof:

Q.3 AOB and COD are two intersecting chords of a circle. Show that Δ^s AOD and BOC are equiangular.

Given: In a circle \overline{AOB} and \overline{COD} are two intersecting chords at point O.

To Prove: \triangle AOD and \triangle BOC are equiangular

Construction: Join A with C and D. Join B with C and D.

Proof:

Statements	Reasons
$m \angle 1 \cong m \angle 2(i)$	Vertical angles
\overline{AC} is chord and angles $\angle 3$, $\angle 4$ are in the same segment.	
$\angle 3 \cong \angle 4$ (ii)	
Now \overline{BD} is chord and angles $\angle 5$, $\angle 6$ are in the same	
segments	
Therefore $\angle 5 \cong \angle 6$ (iii)	
Thus, ΔAOD and ΔBOC are equiangular	From (i), (ii) and (iii)

Q.4 \overline{AD} and \overline{BC} are two parallel chords of a circle prove that arc $AB \cong arc\ CD$ and arc $AC \cong arc\ BD$.

Given: A circle with centre "O". Two chords \overline{AD} and \overline{BC} are such that $\overline{AD} \parallel \overline{BC}$.

To Prove: arc $AB \cong arc CD$ and arc $AC \cong arc BD$

Construction: Join A to B and C. Join D to B and C. \overline{AC} and \overline{BD} intersect each other at point E. some angles are named as $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6$.

Proof:

	Statements	Reasons		
	$m\angle 1 = m\angle 3$ (i)	Angles inscribed by an arc in the same segment		
	$m\angle 2 = m\angle 4$ (ii)	are equal.		
	$m\angle 1 = m\angle 4$ (iii)	Alternate angles are congruent (AD BC)		
	$m \angle 3 = m \angle 4$ (iv)			
	$m\angle 1 = m\angle 2$ (v)	From (i) and (iii)		
In	$\triangle AEB \leftrightarrow \triangle DEC$	From (ii) and (iii)		
	$\overline{AE} \cong \overline{ED}$	Side approximate acqual and lead (a)		
	$m \angle 5 = m \angle 6$	Side opposite to equal angles (v)		
		vertical angles		
	BE≅EC	Sides opposite to equal angles (iv)		
∴	ΔAED ≅ ΔDEC	$S.A.S \cong S.A.S$		
	$\overline{AB} \cong \overline{CD}$	Corresponding sides of congruent.		
Thus	$arc AB \cong arc CD$ (Hence Proved)	Arcs corresponding to congruent chords are		
	$\widehat{mBC} \cong \widehat{mCB}$	congruent.		
	$\widehat{\text{mBA}} + \widehat{\text{mAC}} = \widehat{\text{mCD}} + \widehat{\text{mDB}}$	Self congruent		
	$\widehat{\text{mAB}} + \widehat{\text{mAC}} = \widehat{\text{mAB}} + \widehat{\text{mBD}}$			
	,	\therefore arc $\widehat{AB} \cong$ arc CD proved		
	$\widehat{\text{mAC}} = \widehat{\text{mBD}}$	122 me ez proved		
or	arc $AC \cong arc BD$ (Hence proved)			