EXERCISE 2.5

Q.1 Write the quadratic equation having following roots.

- (a) 1, 5 (b) 4, 9
 - (c)
- (d) 0,-3 (e)
- 2,-6 (f) -1,-7
- (g) 1+i, 1-i
- (h) $3+\sqrt{2}$, $3-\sqrt{2}$

(a) 1,5

Solution: Since 1 and 5 are the roots of the required quadratic equation, therefore

Sum of roots = S = 1 + 5 = 6

Product of roots = $P = 1 \times 5 = 5$

As $x^2 - Sx + P = 0$ so the required equation is $x^2 - 6x + 5 = 0$

4,9 (b)

Solution: Since 4 and 9 are the roots of the required quadratic equation, therefore

Sum of roots = S = 4 + 9 = 13

Product of roots = $P = 4 \times 9 = 36$

As
$$x^2 - Sx + P = 0$$

So the required equation is

$$x^2 - 13x + 36 = 0$$

(c) -2, 3

Since -2, 3 are the roots of required quadratic equation, therefore

Sum of roots = S = -2 + 3 = 1

Product of roots = $P = -2 \times 3 = -6$

As
$$x^2 - Sx + P = 0$$

Therefore the required quadratic equation is

$$x^2 - x - 6 = 0$$

0, -3(d)

Since 0, -3 are the roots of required quadratic equation therefore

Sum of roots = S = 0 + (-3) = -3

Product of roots = $P = 0 \times (-3) = 0$

As
$$x^2 - Sx + P = 0$$

Therefore the required quadratic equation is

$$x^2 + 3x + 0 = 0 \Rightarrow$$

$$\Rightarrow x^2 + 3x = 0$$

2, -6

Solution: Since 2 and -6 are the roots of the required quadratic equation therefore

Sum of roots = S = 2 + (-6) = 2 - 6 = -4

Product of roots =
$$P = 2 \times (-6) = -12$$

As $x^2 - Sx + P = 0$ so the required equation is $x^2 + 4x - 12 = 0$

(f)
$$-1, -7$$

Solution: Since -1 and -7 are the roots of the required quadratic equation therefore

Sum of roots =
$$S = (-1) + (-7)$$

$$=-1-7=-8$$

Product of roots = P = (-1)(-7) = 7

As $x^2 - Sx + P = 0$ so the required equation is

$$x^2 + 8x + 7 = 0$$

1+i, 1-i(g)

Solution: Since 1 + i and 1 - i are the roots of the required quadratic equation therefore

Sum of roots = S = 1 + 1 + 1 - 1 = 2

Product of roots = P = (1+i)(1-i)

$$P = (1)^2 - (i)^2$$

$$P = 1 - (-1)$$

$$P = 1 + 1 = 2$$

As $x^2 - Sx + P = 0$ so the required equation is

$$x^2 - 2x + 2 = 0$$

(h)
$$3+\sqrt{2}, 3-\sqrt{2}$$

Solution: $3+\sqrt{2}$ and $3-\sqrt{2}$ are the roots of the required quadratic equation therefore

Sum of roots = $S = 3 + \sqrt{2} + 3 - \sqrt{2} = 6$

Product of roots

$$P = (3 + \sqrt{2})(3 - \sqrt{2})$$

$$P = (3)^2 - (\sqrt{2})^2$$

$$P = 9 - 2 = 7$$

As $x^2 - Sx + P = 0$, so the required equation is $x^2 - 6x + 7 = 0$

Q.2 If α, β are the roots of the equation $x^2 - 3x + 6 = 0$. Form equation whose roots are (a) $2\alpha + 1, 2\beta + 1$ (b) α^2, β^2

(c)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

(c)
$$\frac{1}{\alpha}, \frac{1}{\beta}$$
 (d) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$

(e)
$$\alpha + \beta, \frac{1}{\alpha} + \frac{1}{\beta}$$

Solution: As α, β are the roots of the equation $x^2 - 3x + 6 = 0$

$$a = 1, b = -3, c = 6$$

Therefore,

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{1} = 3 \implies \boxed{\alpha + \beta = 3}$$
$$\alpha \beta = \frac{c}{a} = \frac{6}{1} = 6 \implies \boxed{\alpha \beta = 6}$$

(a)
$$2\alpha + 1, 2\beta + 1$$

Sum of roots

$$S = 2\alpha + 1 + 2\beta + 1$$

$$S = 2\alpha + 2\beta + 2$$

$$S = 2(\alpha + \beta) + 2$$

$$S = 2(3) + 2 = 6 + 2 = 8$$

$$S = 8$$

Product of roots

$$P = (2\alpha + 1)(2\beta + 1)$$

$$P = 4\alpha\beta + 2\alpha + 2\beta + 1$$

$$P = 4\alpha\beta + 2(\alpha + \beta) + 1$$

$$P = 4(6) + 2(3) + 1$$

$$P = 24 + 6 + 1 = 31$$

$$P = 31$$

Using $x^2 - Sx + P = 0$, we have

$$x^2 - 8x + 31 = 0$$

(b)
$$\alpha^2$$
, β^2

Solution: As α, β are the roots of the equation $x^2 - 3x + 6 = 0$

$$a = 1$$
, $b = -3$, $c = 6$

Therefore,

$$\alpha + \beta = \frac{-b}{\alpha} = \frac{-(-3)}{1} = 3 \implies \alpha + \beta = 3$$

$$\alpha\beta = \frac{c}{a} = \frac{6}{1} = 6$$
 $\Rightarrow \alpha\beta = 6$

Sum of roots = $S = \alpha^2 + \beta^2$

$$S = (\alpha + \beta)^2 - 2\alpha\beta$$

$$S = (3)^2 - 2(6)$$

$$S = 9 - 12 = -3$$

$$S = -3$$

Product of roots = $P = \alpha^2 \beta^2$

$$P = (\alpha \beta)^2$$

$$P = (\dot{6})^2 = 36$$

$$P = 36$$

Using $x^2 - Sx + P = 0$, we have

$$x^2 + 3x + 36 = 0$$

(c)
$$\frac{1}{\alpha}, \frac{1}{\beta}$$

Solution: As α, β are the roots of the equation $x^2 - 3x + 6 = 0$

$$a = 1$$
, $b = -3$, $c = 6$

Therefore,

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{1} = 3 \implies \alpha + \beta = 3$$

$$\alpha\beta = \frac{c}{a} = \frac{6}{1} = 6$$
 $\Rightarrow \alpha\beta = 6$

Sum of roots = $S = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta}$

$$S = (\alpha + \beta) \cdot \frac{1}{\alpha \beta}$$

$$S = 3 \times \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

$$S = \frac{1}{2}$$

Product of roots = P = $\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)$

$$P = \frac{1}{\alpha \beta} = \frac{1}{6} P = \frac{1}{6}$$

Using $x^2 - Sx + P = 0$, we have

$$x^2 - \frac{1}{2}x + \frac{1}{6} = 0$$

Multiplying by '6' on both side, we have

$$6x^2 - 3x + 1 = 0$$

(d)
$$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$$

Solution: As α , β are the roots of the equation $x^2 - 3x + 6 = 0$

$$a = 1, b = -3, c = 6$$

Therefore,

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{1} = 3 \implies \alpha + \beta = 3$$

$$\alpha\beta = \frac{c}{a} = \frac{6}{1} = 6$$
 $\Rightarrow \alpha\beta = 6$

Sum of roots =
$$S = \frac{\alpha}{\beta} + \frac{\beta}{a}$$

$$S = \frac{\alpha^2 + \beta^2}{\beta \alpha}$$

$$S = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$S = \frac{(3)^2 - 2(6)}{6}$$

$$S = \frac{9-12}{6}$$

$$S = \frac{-3}{6}$$

$$S = \frac{-1}{2}$$

Product of roots = $P = \left(\frac{\alpha}{\beta}\right) \left(\frac{\beta}{\alpha}\right) = 1$

Using $x^2 - Sx + P = 0$, we have

$$x^2 + \frac{1}{2}x + 1 = 0$$

Multiplying both sides by '2', we have

$$2x^2 + x + 2 = 0$$

(e)
$$\alpha + \beta, \frac{1}{\alpha} + \frac{1}{\beta}$$

Solution: As α , β are the roots of the equation $x^2 - 3x + 6 = 0$

$$a = 1$$
, $b = -3$, $c = 6$

Therefore,

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{1} = 3 \implies \boxed{\alpha + \beta = 3}$$
$$\alpha \beta = \frac{c}{a} = \frac{6}{1} = 6 \implies \boxed{\alpha \beta = 6}$$

Sum of roots = S =
$$(\alpha + \beta) + \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$$

$$S = (\alpha + \beta) + \frac{\beta + \alpha}{\alpha \beta}$$

$$S = (\alpha + \beta) + \frac{(\alpha + \beta)}{a\beta}$$

$$S = 3 + \frac{3}{6}$$

$$S = 3 + \frac{1}{2}$$

$$S = \frac{6+1}{2}$$

$$S = \frac{7}{2}$$

Product of roots = P =
$$(\alpha + \beta) \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)$$

$$P = (\alpha + \beta) \left(\frac{\beta + \alpha}{\alpha \beta} \right)$$

$$P = (\alpha + \beta) \left(\frac{\alpha + \beta}{\alpha \beta} \right)$$

$$P = 3\left(\frac{3}{6}\right)$$

$$P = \frac{3}{2}$$

Using $x^2 - Sx + P = 0$, we have

$$x^2 - \frac{7}{2}x + \frac{3}{2} = 0$$

Multiplying both sides by '2' we have

$$2x^2 - 7x + 3 = 0$$

Q.3 If α, β are the roots of the equation $x^2 + px + q = 0$ From equation whose roots are

(a).
$$\alpha^2, \beta^2$$
 (b) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$

Solution:

Since α , β are the roots of the equation $x^2 + px + q = 0$

$$ax^2 + bx + c = 0$$

By comparing the coefficients of these equations, we have

$$a = 1, b = p, c = q$$

$$\alpha + \beta = \frac{-b}{a} = \frac{-p}{1} = -p \implies \alpha + \beta = -p$$

$$\alpha \beta = \frac{c}{a} = \frac{q}{1} = q \implies \alpha \beta = q$$

(a)
$$\alpha^2$$
, β^2

Sum of roots = S =
$$\alpha^2 + \beta^2$$

S = $(\alpha + \beta)^2 - 2\alpha\beta$
S = $(-p)^2 - 2q$
S = $p^2 - 2a$

Product of roots = $P = \alpha^2 \beta^2$

$$P = (\alpha \beta)^2$$

$$P = q^2$$

Using $x^2 - Sx + P = 0$, we have

$$x^2 - (p^2 - 2q)x + q^2 = 0$$

(b)
$$\frac{\alpha}{\beta}$$
, $\frac{\beta}{\alpha}$

Solution:

Since α , β are the roots of the equation $x^2 + px + q = 0$

$$ax^2 + bx + c = 0$$

By comparing the coefficients of these equations, we have

$$a = 1, b = p, c = q$$

$$\alpha + \beta = \frac{-b}{a} = \frac{-p}{1} = -p \implies \boxed{\alpha + \beta = -p}$$

$$\alpha \beta = \frac{c}{a} = \frac{q}{1} = q \implies \boxed{\alpha \beta = q}$$
Sum of roots = $S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

$$S = \frac{\alpha^2 + \beta^2}{\alpha \beta}$$

$$S = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha \beta}$$

$$S = \frac{(-p)^2 - 2(q)}{q}$$

$$S = \frac{p^2 - 2q}{q}$$

$$(\alpha \beta)(\beta)$$

Product of roots = P =
$$\left(\frac{\cancel{\alpha}}{\cancel{\beta}}\right)\left(\frac{\cancel{\beta}}{\cancel{\alpha}}\right) = 1$$

Using
$$x^2 - Sx + P = 0$$
, we have

$$x^2 - \left(\frac{p^2 - 2q}{q}\right)x + 1 = 0$$

Multiplying by q

$$qx^{2} - (p^{2} - 2q)x + q = 0$$