EXERCISE 2.6

Q.1 Use synthetic division to find the quotient and the remainder, when

(i)
$$(x^2 + 7x - 1) \div (x + 1)$$

As
$$x+1 = x - (-1)$$
 So $a = -1$

Now write the co-efficient of dividend in a row and a = -1 on the left side

Quotient Q(x) = x + 6

Remainder R = -7

(ii)
$$(4x^3 - 5x + 15) \div (x + 3)$$

 $(4x^3 + 0x^2 - 5x + 15) \div (x + 3)$

or As
$$x+3=x-(-3)$$
, So $a=-3$

Now write the co-efficient of dividend in a row and a = -3 on the left side

Quotient = $Q(x) = 4x^2 - 12x + 31$

Remainder = R = -78

(iii)
$$(x^3 + x^2 - 3x + 2) \div (x - 2)$$

As $(x-2)$ So $a = 2$

Now write the co-efficient of dividend in a row and a = 2 on the left side.

Quotient $Q(x) = x^2 + 3x + 3$

Remainder R = 8

Q.2 Find the value of h using synthetic division, if 3 is the zero of the polynomial $2x^3-3hx^2+9$

(i) Solution: Let $P(x) = 2x^3 - 3hx^2 + 0x + 9$ and its zero is 3. Then by synthetic division.

Remainder = 63 - 27h

Since 3 is the zero of the polynomial, therefore Remainder = 0

$$63 - 27h = 0$$

$$63 = 27h$$

$$\Rightarrow h = \frac{63}{27} \qquad \Rightarrow h = \frac{7}{3}$$

(ii) Find the value of h using synthetic division, if 1 is the zero of the polynomial x^3-2hx^2+11

Solution:

Let $P(x)=x^3-2hx^2+0x+11$ and its zero is 1. Then by synthetic division

Remainder = 12 - 2h

Since 1 is the zero of the polynomial So, Remainder = 0 that is

$$12 - 2h = 0$$

$$12 = 2h$$

$$\Rightarrow h = \frac{12}{2}$$

$$h=6$$

(iii) Find the value of h using synthetic division, if -1 is the zero of the Polynomial $2x^3+5hx-23$

Solution:

Let
$$P(x) = 2x^3 + 5hx - 23$$

 $P(x) = 2x^3 + 0x^2 + 5hx - 23$

If-1 is zero of p(x) then by Synthetic division

Remainder = -5h - 25

Since -1 is the zero of the Polynomial

So Remainder
$$= 0$$

$$-5h -25 = 0$$

$$-5h = 25$$

$$h = \frac{25}{-5} \implies \boxed{h = -5}$$

- Q.3 Use synthetic division to find the values of l and m,
- (i). if (x+3) and (x-2) are the factors of the polynomial $x^3+4x^2+2lx+m$

Solution: Since (x+3) and (x-2) are the factors of $P(x) = x^3 + 4x^2 + 2\ell x + m$

Therefore -3 and 2 are the zeros of polynomial P(x). Now by synthetic division.

	1	4	2ℓ	m
-3	↓	-3	-3	-6/+9
	1	1	2l-3	m+(-6l+9)

Since -3 is the zero of polynomial, therefore remainder is zero that is

$$m-6\ell+9=0$$

$$\Rightarrow m-6\ell=-9....(i)$$

And

Since 2 is the zero of polynomial, therefore remainder is zero that is

$$m + 4\ell + 24 = 0$$

 $m + 4\ell = -24$ (ii)

Subtracting equations (ii) from (i)

$$m - 6\ell = -9$$

$$\pm m \pm 4\ell = \mp 24$$

$$-10\ell = 15$$

$$\ell = \frac{15}{-10} = \frac{3}{-2}$$

$$\Rightarrow$$
 $\ell = -\frac{3}{2}$

Put it in equations (i), we get

$$m-6\left(\frac{-3}{2}\right) = -9$$

$$m+\frac{18}{2} = -9$$

$$m+9 = -9$$

$$m = -9 - 9$$

$$m = -18$$

(ii). Find the values of l and m if (x-1) and (x+1) are the factors of the polynomial $x^3-3lx^2+2mx+6$

Solution: Since (x-1) and (x+1) are the factors of $P(x) = x^3 - 3\ell x^2 + 2mx + 6$

Therefore 1 and -1 are zeros of polynomial P(x). Now by synthetic division

Since 1 is the zero of polynomial, therefore remainder is zero that is

$$7 - 3\ell + 2m = 0$$

 $2m - 3\ell = -7$ (i)

And

Since -1 is the zero of polynomial therefore remainder is zero that is

$$5-3\ell-2m=0$$

$$\Rightarrow 2m+3\ell=5 \dots (ii)$$

Adding equations (i) and (ii)

$$2m \cancel{3}\ell = -7$$

$$2m \cancel{3}\ell = 5$$

$$4m = -2$$

$$m = \frac{-2}{4}$$

$$m = \frac{-1}{2}$$

Put it in equation (i),

$$2\left(-\frac{1}{2}\right) - 3\ell = -7$$
$$-1 - 3\ell = -7$$
$$-3\ell = -7 + 1$$
$$-3\ell = -6$$

$$\Rightarrow \ell = \frac{-6}{-3}$$

$$\Rightarrow \qquad \boxed{\ell=2}$$

Q.4 Solve by using synthetic division,

(i) If 2 is the root of the equation x^3 –28x+48= 0 Solution: Let $P(x) = x^3 + 0x^2 - 28x + 48$ Since 2 is the root of the equation $x^3 - 28x + 48 = 0$ then by synthetic division.

The depressed equation is

$$x^{2} + 2x - 24 = 0$$

$$x^{2} + 6x - 4x - 24 = 0$$

$$x(x+6) - 4(x+6) = 0$$

$$(x+6)(x-4) = 0$$

Either

$$x + 6 = 0$$
 or $x - 4 = 0$
 $x = -6$ or $x = 4$

Thus 2, -6 and 4 are the roots of the given equation

(ii). If 3 is the root of the equation $2x^3-3x^2-11x+6=0$

Solution: Since 3 is the root of the equation

$$2x^3 - 3x^2 - 11x + 6 = 0$$

Then by synthetic division

The depressed equation is

$$2x^{2} + 3x - 2 = 0$$

$$2x^{2} + 4x - x - 2 = 0$$

$$2x(x+2) - 1(x+2) = 0$$

$$(x+2)(2x-1) = 0$$

Either x+2=0 or 2x-1=0x=-2 or 2x=1 $x=\frac{1}{2}$

Thus, 3, -2 and $\frac{1}{2}$ are the roots of the given equation.

(iii). If -1 is the root of the equation $4x^3-x^2-11x-6=0$

Solution: Since -1 is the root of the equation.

$$4x^3 - x^2 - 11x - 6 = 0$$

Then by synthetic division

The depressed equation is

$$4x^{2}-5x-6=0$$

$$4x^{2}-8x+3x-6=0$$

$$4x(x-2)+3(x-2)=0$$

$$(x-2)(4x+3)=0$$

Either
$$x-2=0$$
 or $4x+3=0$
 $x=2$ or $4x=-3$

$$x=\frac{-3}{4}$$

Thus -1, 2 and $\frac{-3}{4}$ are the roots of the given equation

(i) Solve by using synthetic division, if 1 and 3 are the roots of the equation $x^4-10x^2+9=0$

Solution: Since 1 and 3 are the roots of the equation $x^4 - 10x^2 + 9 = 0$

Then by synthetic division, we get

		-		· · · · · · · · · · · · · · · · · · ·	5500
	1	0	-10	0	9
1	↓,	1	1	<u>-9</u>	-9
	1	1	-9	-9	0
3	1	3	12	9	,
	1	4	3	0	

Thus the depressed equation is

$$x^{2} + 4x + 3 = 0$$

$$x + 3x + x + 3 = 0$$

$$x(x+3) + 1(x+3) = 0$$

$$(x+3)(x+1) = 0$$
Either $x+3=0$ or $x+1=0$

$$x=-3$$

Hence $\overline{1, 3, -3}$ and -1 are the roots of the given equation

(ii) Solve by using synthetic division, if 3 and -4 are the roots of the equation $x^4+2x^3-13x^2-14x+24=0$ 02(084)

Solution: Since 3 and -4 are the roots of the given equation $x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$ then by synthetic division, we get

	1	2	-13	-14	24
3	↓	3	15	6	-24
	1	5	2	-8	0
-4	\downarrow	-4	-4	8	
	1	1	-2	0	

The depressed equation is

$$x^{2} + x - 2 = 0$$

$$x^{2} + 2x - x - 2 = 0$$

$$x(x+2) - 1(x+2) = 0$$

$$(x+2)(x-1) = 0$$

Either
$$x + 2 = 0$$
 or $x - 1 = 0$

$$x = -2$$

Thus 3, -4, -2 and 1 are the roots of the given equation.