## EXERCISE 5.3

```
Q.1
        If U = \{1, 2, 3, 4, \dots, 10\}
A = \{1, 3, 5, 7, 9\}, B = \{1, 4, 7, 10\}
then verify the following questions:
Solution:
(i) A - B = A \cap B'
L.H.S = A - B = \{1,3,5,7,9\} - \{1,4,7,10\}
                = \{3, 5, 9\} \dots (i)
R.H.S = A \cap B'
B'=U-B=\{1, 2, 3, ...., 10\} - \{1, 4, 7, 10\}
          = \{2, 3, 5, 6, 8, 9\}
A \cap B' = \{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 6, 8, 9\}
                      ..... (ii)
         = \{3, 5, 9\}
From (i) and (ii)
L.H.S = R.H.S
    A-B = A \cap B'
(ii) B-A = B \cap A'
L.H.S = B - A = \{1,4,7,10\} - \{1,3,5,7,9\}
                = \{4, 10\}....(i)
R.H.S = B \cap A'
A'=U-A=\{1,2,3,...,10\}-\{1,3,5,7,9\}
        = \{2, 4, 6, 8, 10\}
B \cap A' = \{1, 4, 7, 10\} \cap \{2, 4, 6, 8, 10\}
        = \{4, 10\}.... (ii)
From (i) and (ii)
L.H.S = R.H.S
B - A = B \cap A'
      (A \cup B)' = A' \cap B'
L.H.S = (A \cup B)'
A \cup B = \{1, 3, 5, 7, 9\} \cup \{1, 4, 7, 10\}
       = \{1, 3, 4, 5, 7, 9, 10\}
(A \cup B)' = U - (A \cup B)
         = \{1,2,3,\ldots,10\} - \{1,3,4,5,7,9,10\}
        = \{2, 6, 8\}
                         .....(i)
R.H.S = A' \cap B'
A' = U - A = \{1,2,3,...,10\} - \{1,3,5,7,9\}
            = \{2, 4, 6, 8, 10\}
B' = U - B = \{1,2,3,...,10\} - \{1,4,7,10\}
            = \{2, 3, 5, 6, 8, 9\}
A' \cap B' = \{2, 4, 6, 8, 10\} \cap \{2, 3, 5, 6, 8, 9\}
        = \{2, 6, 8\}
                        .....(ii)
From (i) and (ii)
L.H.S = R.H.S
```

```
(A \cap B)' = A' \cup B'
(iv)
L.H.S = (A \cap B)'
A \cap B = \{1, 3, 5, 7, 9\} \cap \{1, 4, 7, 10\}
      = \{1, 7\}
(A \cap B)' = U - (A \cap B)
         = \{1, 2, 3, ..., 10\} - \{1, 7\}
         = \{2, 3, 4, 5, 6, 8, 9, 10\} \dots (i)
R.H.S = A' \cup B'
A'=U-A=\{1,2,3,\ldots,10\}-\{1,3,5,7,9\}
             = \{2, 4, 6, 8, 10\}
B'= U-B =\{1,2,3,...,10\} - \{1,4,7,10\}
           = \{2, 3, 5, 6, 8, 9\}
A' \cup B' = \{2, 4, 6, 8, 10\} \cup \{2, 3, 5, 6, 8, 9\}
       = \{2, 3, 4, 5, 6, 8, 9, 10\}... (ii)
From (i) and (ii)
L.H.S = R.H.S
(v) (A-B)' = A' \cup B
L.H.S = (A-B)'
A - B = \{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}
      = \{3, 5, 9\}
(A - B)' = U - (A - B)
         = \{1, 2, 3, \ldots, 10\} - \{3, 5, 9\}
         = \{1, 2, 4, 6, 7, 8, 10\}... (i)
R.H.S = A' \cup B
A' = U - A = \{1,2,3, ...,10\} - \{1,3,5,7,9\}
            = \{2, 4, 6, 8, 10\}
A' \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 4, 7, 10\}
        = \{1, 2, 4, 6, 7, 8, 10\}... (ii)
From (i) and (ii)
L.H.S = R.H.S
(vi) (B-A)' = B' \cup A
L.H.S = (B-A)'
B - A = \{1, 4, 7, 10\} - \{1, 3, 5, 7, 9\}
       = \{4, 10\}
(B-A)' = U - (B-A)
        = \{1, 2, 3, \ldots, 10\} - \{4, 10\}
        = \{1, 2, 3, 5, 6, 7, 8, 9\}...
R.H.S = B' \cup A
B'=U-B = \{1,2,3,4,...,10\} - \{1,4,7,10\}
            = \{2, 3, 5, 6, 8, 9\}
B' \cup A = \{2,3,5,6,8,9\} \cup \{1,3,5,7,9\}
        = \{1, 2, 3, 5, 6, 7, 8, 9\}... (ii)
From (i) and (ii)
L.H.S = R.H.S
```

```
Q.2 If A = \{1, 3, 5, 7, 9\} B = \{1, 4, 7, 10\}
    C = \{1, 5, 8, 10\}
    Then verily the following:
Solution:
(i) (A \cup B) \cup C = A \cup (B \cup C)
L.H.S = (A \cup B) \cup C
= (\{1,3,5,7,9\} \cup \{1,4,7,10\}) \cup \{1,5,8,10\}
= \{1, 3, 4, 5, 7, 9, 10\} \cup \{1, 5, 8, 10\}
= \{1, 3, 4, 5, 7, 8, 9, 10\} .....(i)
R.H.S = A \cup (B \cup C)
= \{1,3,5,7,9\} \cup (\{1,4,7,10\} \cup \{1,5,8,10\})
= \{1,3,5,7,9\} \cup \{1,4,5,7,8,10\}
= \{1, 3, 4, 5, 7, 8, 9, 10\}
                                ..... (ii)
From (i) and (ii)
L.H.S = R.H.S
       (A \cap B) \cap C = A \cap (B \cap C)
 L.H.S = (A \cap B) \cap C
 = (\{1,3,5,7,9\} \cap \{1,4,7,10\}) \cap \{1,5,8,10\}
 = \{1, 7\} \cap \{1, 5, 8, 10\}
 = \{1\}
             ..... (i)
 R.H.S = A \cap (B \cap C)
 = \{1,3,5,7,9\} \cap (\{1,4,7,10\} \cap \{1,5,8,10\})
 = \{1, 3, 5, 7, 9\} \cap \{1, 10\}
 = \{1\}
            ..... (ii)
 From (i) and (ii)
 L.H.S = R.H.S
 (iii) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
 L.H.S = A \cup (B \cap C)
 = \{1,3,5,7,9\} \cup (\{1,4,7,10\} \cap \{1,5,8,10\})
 = \{1, 3, 5, 7, 9\} \cup \{1, 10\}
 = \{1, 3, 5, 7, 9, 10\}
                              ..... (i)
 R.H.S = (A \cup B) \cap (A \cup C)
 A \cup B = \{1, 3, 5, 7, 9\} \cup \{1, 4, 7, 10\}
        =\{1, 3, 4, 5, 7, 9, 10\}
 A \cup C = \{1, 3, 5, 7, 9\} \cup \{1, 5, 8, 10\}
        = \{1, 3, 5, 7, 8, 9, 10\}
Now (A \cup B) \cap (A \cup C)
= \{1,3,4,5,7,9,10\} \cap \{1,3,5,7,8,9,10\}
= \{1, 3, 5, 7, 9, 10\} ...... (ii)
From (i) and (ii)
L.H.S = R.H.S
```

```
(iv) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
L.H.S = A \cap (B \cup C)
= \{1,3,5,7,9\} \cap (\{1,4,7,10\} \cup \{1,5,8,10\})
= \{1, 3, 5, 7, 9\} \cap \{1, 4, 5, 7, 8, 10\}
= \{1, 5, 7\}
                           ..... (i)
R.H.S = (A \cap B) \cup (A \cap C)
A \cap B = \{1,3,5,7,9\} \cap \{1,4,7,10\}
       = \{1, 7\}
A \cap C = \{1, 3, 5, 7, 9\} \cap \{1, 5, 8, 10\}
       = \{1, 5\}
Now (A \cap B) \cup (A \cap C) = \{1,7\} \cup \{1,5\}
                    = \{1,5,7\}.... (ii)
From (i) and (ii)
         = R.H.S
L.H.S
Q.3 If U = N, then verify De-Morgan's
laws by using:
    A = \phi, B = P
Solution:
    A = \{ \}.
    B = \{2, 3, 5, 7, \dots\}
    U = \{1, 2, 3, 4, 5, 6, 7, \ldots\}
(i) (A \cup B)' = A' \cap B'
L.H.S = (A \cup B)'
A \cup B = \{ \} \cup \{2, 3, 5, 7, ... \}
        = \{2, 3, 5, 7, \dots\}
(A \cup B)' = U - (A \cup B)
         =\{1, 2, 3, 4, 5, 6, 7, \dots\} - \{2, 3, 5, 7, \dots\}
         = \{1, 4, 6, \ldots\} .....(i)
R.H.S = A' \cap B'
A'=U-A=\{1, 2, 3, 4, 5, 6, 7, \dots\}-\{\}
              = \{1, 2, 3, 4, 5, 6, 7, \ldots\}
     B'=U-B=\{1,2,3,4,5,6,7...\}-\{2,3,5,7,...\}
                 = \{1, 4, 6, \dots\}
     A' \cap B' = \{1,2,3,4,5,6,7,\ldots\} \cap \{1,4,6,\ldots\}
             =\{1, 4, 6, ...\} ......(ii)
From (i) and (ii)
L.H.S = R.H.S
```

(ii) 
$$(A \cap B)' = A' \cup B'$$
  
L.H.S =  $(A \cap B)'$   
 $(A \cap B) = \{ \} \cap \{2, 3, 5, 7, ... \}$   
=  $\{ \}$   
 $(A \cap B)' = U - (A \cap B)$   
=  $\{1, 2, 3, 4, 5, 6, 7 ... \} - \{ \}$   
=  $\{1, 2, 3, 4, 5, 6, 7 ... \}$  (i)  
R.H.S =  $A' \cup B'$   
 $A' = U - A = \{1, 2, 3, 4, ... \} - \{ \}$ 

$$= \{1, 2, 3, 4, ...\}$$

$$B'=U - B=\{1,2,3,4,5,6,7....\} - \{2,3,5,7,...\}$$

$$= \{1, 4, 6, ...\}$$

$$A' \cup B' = \{1,2,3,4,5,6,7...\} \cup \{1, 4, 6, ...\}$$

$$= \{1, 2, 3, 4, ...\}...... (ii)$$
From (i) and (ii)
$$L.H.S = R.H.S$$

Q.4 If  $\cup = \{1, 2, 3, 4, ....10\}$ ,  $A = \{1, 3, 5, 7, 9\}$  and  $B = \{2, 3, 4, 5, 8\}$  then prove the following questions by Venn Diagram.

Solution: A  $\cap$ B = {1, 3, 5, 7, 9} $\cap$ {2, 3, 4, 5, 8} = {3, 5} So given sets A and B are overlapping sets

(i) 
$$A - B = A \cap B'$$

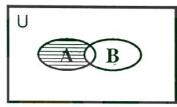



Fig: 1 (A-B)

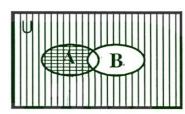



Fig: 2 )A∩B'(

- A B is shown by horizontal line segments in fig. 1.
- B' is shown by vertical line segments and squares in fig. 2.
- $A \cap B'$  is shown by squares in fig. 2. Regions shown in fig. 1 and fig. 2 are equal, thus  $A - B = A \cap B'$

## (ii) $B - A = B \cap A'$

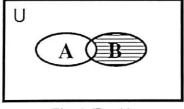



Fig. 1 (B - A)

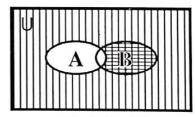
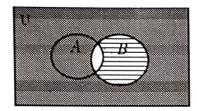




Fig:  $2(B \cap A')$ 

- B A is shown by horizontal line segments in fig. 1.
- A' is shown by vertical line segments and squares in fig. 2.
- B $\cap$ A' is shown by squares in fig. 2. Regions shown in fig. 1 and fig. 2 are equal, thus B – A = B $\cap$ A'.

(iii)  $(A \cup B)' = A' \cap B'$  (De-Morgan's Law)



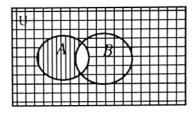



Fig.1

Fig.2

- $A \cup B$  is shown by horizontal line segments in Fig. 1.
- $(A \cup B)'$  is shown by shaded area in Fig. 1.
- A'is shown by horizontal line segments and squares in Fig. 2.
- B' is shown by vertical line segments and squares in Fig. 2.
- A'∩B' is shown by squares in Fig. 2.
   Shaded area shown in Fig. 1 and square area shown in Fig. 2 are equal.
   thus (A∪B)' = A'∩B'
- (iv)  $(A \cap B)' = A' \cup B'$

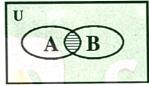



Fig. 1

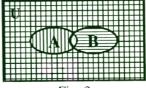



Fig. 2

- $A \cap B$  is shown by horizontal line segments in Fig. 1.
- $(A \cap B)'$  is shown by shaded area in Fig. 1.
- A' is shown by horizontal line segments and squares in Fig. 2.
- B' is shown by vertical line segments and squares in Fig. 2.
- $A' \cup B'$  is shown by squares, horizontal and vertical line segments in Fig. 2. Shaded area shown in Fig. 1 and area of squares, vertical and horizontal line segments shown in Fig. 2 are equal. thus  $(A \cap B)' = A' \cup B'$
- $(v) \qquad (A-B)' = A' \cup B$

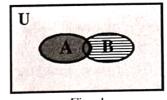



Fig. 1

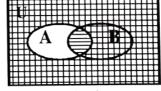



Fig.<sub>1</sub>2

- A-B is shown by horizontal line segments in Fig. 1.
- (A-B)' is shown by shaded area in Fig.1.
- A' is shown by squares Fig. 2.
- A' $\cup$ B is shown by squares and horizontal line segments in Fig. 2. Shaded area in Fig. 1 and area of squares & horizontal line segments in Fig. 2 are equal. thus  $(A - B)' = A' \cup B$

(vi) 
$$(B-A)' = B' \cup A$$

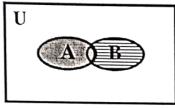
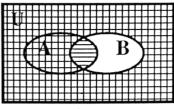




Fig. 1



- B-A is shown by horizontal line segments in Fig. 1. (B-A)' is shown by shaded area in Fig.1.
- B' is shown by squares in Fig. 2.
- B'∪A is shown by squares and horizontal line segments in Fig. 2. Shaded area in Fig. 1 and area of squares & vertical line segments in Fig. 2 are equal. thus  $(B - A)' = B' \cup A$