EXERCISE 7.2

Q.1. Find θ , when:

(i)
$$l = 2cm, r = 3.5 cm$$

Solution: Using rule

$$1 = r \theta,$$

$$2 = 3.5 \theta$$

$$\frac{2}{3.5} = \theta$$

$$\theta = 0.57 \text{ radian}$$

(ii)
$$l = 4.5 \text{ m}, r = 2.5 \text{ m}$$

Solution: Using rule

$$I = r \theta,$$

$$- = \theta$$

$$\frac{4.5}{2.5} = \theta$$

$$\theta = 1.8 \text{ radian}$$

Q.2. Find 1, when

(i)
$$\theta = 180^{\circ}, r = 4.9 \text{ cm}$$

Solution: As θ should be in radians so $\theta = 180^{\circ}$

$$= 180 \frac{\pi}{180} \text{ radian}$$

 π radian

Using rule $I = r \theta$ = 4.9 cm × π = 15.4 cm

(ii) $\theta = 60^{\circ}30', r = 15 \text{ mm}_{07(036)}$

Solution: As 'θ' should be in radians, so

$$\theta = 60^{\circ}30'$$
= $60^{\circ} + \frac{30}{60}''$
= $60^{\circ} + 0.5^{\circ}$
= 60.5°
= $60.5 \frac{\pi}{180}$ radian

 $\theta = 1.056 \text{ radian}$

Using rule $I = r \theta$ = 15 mm × 1.056 = 15.84 mm

Q.3. Find r, when

(i)
$$I = 4 \text{ cm}, \quad \theta = \frac{1}{4} \text{ radian}$$

Solution: Using rule $I = r\theta$

$$4cm = r \frac{1}{4}$$

$$4cm \times 4 = r$$

$$r = 16 cm$$

(ii)
$$l = 52 \text{ cm}$$
, $\theta = 45^{\circ}$

Solution: As θ should be in radians.

$$\theta = 45^{\circ}$$

$$= 45 \frac{\pi}{180} \text{ radian}$$

$$\frac{\pi}{4}$$
 radian

Now using rule $I = r \theta$

$$52 \text{ cm} = \text{r} \frac{\pi}{4}$$

$$\frac{52\text{cm}\times4}{\pi} = \text{r}$$

$$r = 66.21 \text{ cm}$$

Q.4. In a circle of radius 12m, find the length of an arc which subtends a central angle $\theta = 1.5$ radian.

Solution: Radius = r = 12m

Arc length =
$$1 ? =$$

Central angle = $\theta = 1.5$ radian

Using rule
$$I = r \theta$$

 $I = 12m \times 1.5$
 $I = 18m$

Q.5. In a circle of radius 10m, find the distance travelled by a point moving on this circle if the point makes 3.5 revolution.

Solution: Radius = r = 10m

Number of revolutions = 3.5

Angle of one revolution = 2π radian

Angle of 3.5 revolution = θ

=
$$3.5 \times 2\pi$$
 radian $\theta = 7\pi$ radian

Distance travelled = 1 ? =

Using rule
$$I = r \theta$$

 $I = 10 \text{ m} \times 7\pi$
 $I = 220 \text{ m}$

Q.6. What is the circular measure of the angle between the hands of the watch at 3 O' clock?

Solution:

At 3 O' clock the minute hand will be at 12 and hour hand will be at 3 i.e the angle between the hands of watch will be one quarter of the central angle of full circle

i.e =
$$\frac{1}{4}$$
 of 360°
= $\frac{1}{4} \times 360$ °
= 90°
= 90 $\frac{\pi}{180}$ radian
= $\frac{\pi}{2}$ radian.

Q.7. What is the length of arc APB?

Solution: From the figure we see that

Radius = r = 8cm
Central angle =
$$\theta$$

= 90°
 $\frac{\pi}{2}$ radian

$$2$$
Arc length = $1 ? =$

By rule
$$I = r \theta$$

$$I = \frac{4}{2}$$
 cm $\times \frac{\pi}{2}$

$$I = 4 \text{cm} \times \pi$$

$$I = 12.57 \text{ cm}$$

So, length of arc APB is 12.57 cm

Q.8. In a circle of radius 12 cm, how long an arc subtends a central angle of 84°?

Solution: Radius = r = 12cm

Arc length =
$$1 ? =$$

Central angle =
$$\theta = 84^{\circ}$$

$$84 \frac{\pi}{180}$$
 radian

Now by rule
$$I = r \theta$$

$$= 12 \text{cm} \times 1.466$$

$$= 17.6 \text{ cm}$$

Q.9. Find the area of sector OPR.

Radius
$$= r = 6cm$$

Central angle =
$$\theta = 60^{\circ}$$

$$=60 \frac{\pi}{180}$$
 radian

$$\frac{\pi}{3}$$
 radian

Area of sector
$$=$$
?

As Area of sector =
$$\frac{1}{2} r^2 \theta$$

$$= \frac{1}{2} \times (6 \text{cm})^2 \times \frac{\pi}{3}$$

$$= \frac{1}{\cancel{6}} \times {}^{6}\cancel{3} 6 \text{cm}^{2} \times \pi$$

$$=6\pi \text{ cm}^2$$

$$= 18.85 \text{ cm}^2$$

Radius = r = 20cm
Central angle =
$$\theta$$
 = 45°
= 45 $\frac{\pi}{180}$ radian

$$=$$
 $\frac{\pi}{4}$ radian

Area of sector =?

Area of sector =
$$\frac{1}{2}$$
 r² θ
= $\frac{1}{2}$ (20cm)² $\times \frac{\pi}{4}$
= $\frac{400\text{cm}^2}{8} \times \pi$
= 50 π cm²
= 157.1 cm²

Q.10. Find area of sector inside a central angle of 20° in a circle of radius 7 m.

Solution: Area of sector = ?

=

Radius =
$$r = 7m$$

Central angle = $\theta = 20^{\circ}$
= $20 \frac{\pi}{180}$ radian
 $\frac{\pi}{9}$ radian

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2}\times(7\text{m})^2\times\frac{\pi}{9}$
= $\frac{49\pi}{18}m^2$
= 8.55 m²

Q.11. Sehar is making skirt. Each panel of this skirt is of the shape shown shaded in the diagram. How much material (cloth) is required for each panel?

Solution: Central angle = $\theta = 80^{\circ}$ = $80 \frac{\pi}{180}$ radian

$$=$$
 $\frac{4\pi}{9}$ radian

Radius of bigger sector = R = (56 + 10)cm

$$R = 66 \text{ cm}$$

Radius of smaller sector = r = 10 cm Shaded area = ?

Area of bigger sector = $\frac{1}{2}R^2\theta$

$$= \frac{1}{2} \times (66cm)^2 \times \frac{2 \cancel{4} \pi}{9}$$

$$= \frac{484}{4356 \text{cm}^2 \times \frac{2\pi}{\cancel{9}}}$$

$$= 968 \, \pi \, \text{cm}^2$$

Area of smaller sector $=\frac{1}{2}r^2\theta$

$$= \frac{1}{\cancel{Z}} (10cm)^2 \times \frac{2\cancel{A}\pi}{9}$$
$$= \frac{200}{9} \pi cm^2$$

Shaded area =
$$968 \pi - \frac{200}{9} \pi$$

$$=\frac{8712\pi - 200\pi}{9}$$

$$= \frac{8512}{9} \pi \, cm^2$$
$$= 2971.25 \, \text{cm}^2$$

Q.12. Find the area of a sector with central angle of $\frac{\pi}{5}$ radian in a circle of radius 10 cm.

Solution: Area of sector =?

Central angle =
$$\theta = \frac{\pi}{5}$$
 radian

Radius =
$$r = 10cm$$

Area of sector =
$$\frac{1}{2}r^2\theta$$

$$= \frac{1}{2} (10 \text{cm})^2 \times \frac{\pi}{5}$$

$$= \frac{1}{10} \times 100 \text{cm}^2 \times \pi$$
$$= 10\pi \text{ cm}^2$$

Q.13. The area of sector with central angle
$$\theta$$
 in a circle of radius 2m is 10 square meter. Find θ in radians.

 $= 31.43 \text{ cm}^2$

Solution: Area of sector = 10 m^2

Radius =
$$r = 2m$$

Central angle =
$$\theta$$
? =

As Area of sector =
$$\frac{1}{2}r^2\theta$$

$$10\text{m}^2 = \frac{1}{2}(2m)^2 \theta$$

$$10 \text{ m}^2 = \frac{1}{2} (4m^2) \theta$$

$$10m^2 = 2\theta m^2$$

$$\theta = \frac{10m^2}{2m^2}$$

$$\theta = 5 \text{ radian}$$