EXERCISE 8.1

Q. 1 Given $\overline{MAC} = 1$ cm, $\overline{MBC} = 2$ cm, $\overline{MZC} = 120^{\circ}$ Compute the length AB and the area of $\triangle ABC$.

Hint:
$$\left(m\overline{AB}\right)^2 = \left(m\overline{AC}\right)^2 + \left(m\overline{BC}\right)^2 + 2\left(m\overline{AC}\right)\left(m\overline{CD}\right)$$

where
$$(m\overline{CD}) = (m\overline{BC})Cos(180^{\circ} - C)$$
 (Use theorem I)

Solution:

Given: In a ABC mAC=1cm, mBC=2cm, m\(\arr C=120^\circ\)

To Find: (i) $m\overline{AB}$ (ii) Area of ABC Calculations:

(i) In obtuse angled triangle ABC, by theorem I

In right angled BCD

$$\cos 60^{\circ} = \frac{m\overline{CD}}{m\overline{BC}}$$

$$\frac{1}{2} = \frac{m\overline{CD}}{2}$$

$$\overline{CD} = 1cm$$

$$\overline{CD} = 1cm$$

Now putting the corresponding values in (i)

$$(m\overline{AB})^2 = (1\text{cm})^2 + (2\text{cm})^2 + 2(1\text{cm})(1\text{cm})$$

= $1\text{cm}^2 + 4\text{cm}^2 + 2\text{cm}^2$
= 7 cm^2
 $\sqrt{(m\overline{AB})^2} = \sqrt{7cm^2}$ $m\overline{AB} = 2.645\text{ cm}$

(ii) Area of
$$\triangle ABC = \frac{1}{2}$$
 base \times Altitude

Area of
$$\triangle ABC = \frac{1}{2} \text{ m} \overline{AC} \times \text{m} \overline{BD}$$

= $\frac{1}{2} \times 1 \text{cm} \times \text{h}$ (ii)

In right angled triangle BCD

By Pythagoras theorem

$$(2cm)^2 = (1cm)^2 + (h)^2$$

 $4cm^2 = 1 cm^2 + h^2$
 $h^2 = 3 cm^2$ $h = \sqrt{3} cm$

Thus equation (ii) becomes

Area of
$$\triangle ABC = \frac{1}{2} \times 1cm \times \sqrt{3} cm$$

Area of $\triangle ABC = \frac{\sqrt{3}}{2} cm^2$

Q. 2 Find $m\overline{AC}$ if in ABC, $m\overline{BC} = 6cm$, $m\overline{AB} = 4\sqrt{2}cm$ and $m\angle ABC = 135^{\circ}$.

Solution:

Given:

$$m\overline{BC} = 6cm$$

 $m\overline{AB} = 4\sqrt{2}cm$
 $m\angle ABC = 135^{\circ}$

Calculation:

In obtuse angled triangle ABC, by theorem 1

$$(m\overline{AC})^2 = (m\overline{AB})^2 + (m\overline{BC})^2 + 2(m\overline{AB})(m\overline{BD})...(i)$$

In right angled BCD

$$\cos 45^{\circ} = \frac{m\overline{BD}}{m\overline{BC}}$$

$$\frac{1}{\sqrt{2}} = \frac{m\overline{BD}}{6cm}$$

$$m\overline{BD} = \frac{6}{\sqrt{2}} cm$$

Now putting the corresponding values in equation (i) we get

$$(m\overline{AC})^{2} + (4\sqrt{2}cm)^{2} + (6cm)^{2} = 2(4\sqrt{2}cm) + \frac{6}{\sqrt{2}}cm$$

$$= 16(2 \text{ cm}^{2}) + 36\text{cm}^{2} + 8\text{cm} (6\text{cm})$$

$$= 32 \text{ cm}^{2} + 36 \text{ cm}^{2} + 48 \text{ cm}^{2}$$

$$= 116 \text{ cm}^{2}$$

By taking square root of both sides, we get

$$\sqrt{\left(\text{m}\overline{\text{AC}}\right)^2} = \sqrt{116\,\text{cm}^2} = \sqrt{4 \times 29\text{cm}^2}$$

$$\text{m}\overline{\text{AC}} = 2\sqrt{29}\,\text{cm}$$