EXERCISE 9.1

Q. 1 Prove that, the diameters of a circle bisect each other.

Given: A circle with centre O. Two diameters \overline{AB} and \overline{CD} .

To Prove: Two diameters \overline{AB} and \overline{CD} bisect each other.

Proof:

Statements	Reasons
\overline{AB} and \overline{CD} intersect each other at point O. $\overline{OA} \cong \overline{OB}$ (i)	\overline{AB} and \overline{CD} are non-parallel. Radii of the same circle
O is the midpoint of \overline{AB} thus \overline{CD} bisects the \overline{AB} at O. Similarly	from (i)
$\overline{OC} \cong \overline{OD}$ (ii) O is the midpoint of \overline{CD} thus \overline{AB} bisects the \overline{CD} at O.	Radii of the same circle from (ii)
Hence, two diameters \overline{AB} and \overline{CD} bisect each other.	

Q. 2 Two chords of a circle do not pass through the centre. Prove that they cannot bisect each other.

Given:

A Circle with centre "Q". Two different chords \overline{AB} and \overline{CD} not passing through the centre, intersect each other at point E.

To Prove:

 \overline{AB} and \overline{CD} do not bisect each other, i.e.

E is not midpoint of \overline{AB} and \overline{CD} .

Construction:

Suppose chords \overline{AB} and \overline{CD} bisect each other at point E i.e. E is the common midpoint of \overline{AB} and \overline{CD} . Join O to E.

Statements	Reasons
As \overline{OE} is perpendicular from "O" to the midpoint E of \overline{AB} and \overline{CD} so , $m\angle OEA = 90^{\circ}$	A line segment from the centre "O" to the midpoint of a chord is ⊥ on the chord. (Construction) Adding (i) and (ii)
m∠AED = 180° It is only possible when A and D are on the same line segment. But A and D are not on the same line segment. So, our supposition, AB and CD bisect each other, is wrong. Thus chords AB and CD do not bisect each other	Given

Q. 3 If length of the chord $\overline{AB} = 8$ cm. Its distance from the centre is 3 cm, then find the diameter of such circle.

Solution:

Given:

Length of chord = $m\overline{AB}$ = 8cm

Distance from centre = $m\overline{OD}$ = 3cm

To Find: Diameter = 2r

Calculations:

$$mAB = 8cm$$
 (Given)

Perpendicular from the centre to the chord bisects the chord ($\overline{OD} \perp \overline{AB}$)

$$\overline{MAD} = \frac{1}{2} \overline{MAB} = \frac{1}{2} (8cm) = 4cm$$

In right angled $\triangle ADO$ by Pythagoras theorem

$$(m\overline{OA})^2 = (m\overline{AD})^2 + (m\overline{OD})^2$$

$$r^2 = (4cm)^2 + (3cm)^2$$

$$r^2 = 16cm^2 + 9cm^2$$

$$r^2 = 25cm^2$$

$$\sqrt{r^2} = \sqrt{25 cm^2}$$

$$r = 5cm$$

We know that diameter = 2r = 2(5cm) = 10cm

Q.4 Calculate the length of a chord which stands at a distance 5cm from the centre of a circle whose radius is 9cm.

Given:

In a circle with centre O radius = 9cm,

$$m\overline{OD} = 5cm$$

To find:

Length of chord \overline{AB}

Calculations:

In right angled ΔADO , by Pythagoras theorem

$$\left(m\overline{OA}\right)^2 = \left(mAD\right)^2 + \left(mOD\right)^2$$

$$(9cm)^2 = (m\overline{AD}) + (5cm)^2$$

$$81cm^2 = \left(m\overline{AD}\right)^2 + 25cm^2$$

$$81cm^2 - 25cm^2 = \left(m\overline{AD}\right)^2$$

$$56cm^2 = \left(m\overline{AD}\right)^2$$

$$\sqrt{\left(m\overline{AD}\right)^2} = \sqrt{56cm^2}$$
$$m\overline{AD} = \sqrt{56cm}$$

We know that

$$m\overline{AD} = \frac{1}{2}m\overline{AB}$$
 (Perpendicular from the centre to the cord bisects the chord)

$$\Rightarrow m\overline{AB} = 2m\overline{AD}$$

$$= 2 \times \sqrt{56}cm$$

$$m\overline{AB} = 14.966cm$$

or
$$m\overline{AB} \simeq 14.97cm$$