EXERCISE 9.2

Q.1 Two equal chords of a circle intersect, show that the segments of the one are equal corresponding to the segments of the other.

Given: A circle with centre "O". Two equal chords \overline{AB} and \overline{CD} (i.e. $m\overline{AB} = m\overline{CD}$) intersect each other at point E.

To prove: $\overline{MAE} = \overline{MED}$ and $\overline{MEB} = \overline{MEC}$

Construction: Draw perpendiculars \overline{OL} and \overline{OM} from the centre "O" to the chords \overline{AB} and \overline{CD} respectively. L and M are midpoints of \overline{AB} and \overline{CD} respectively.

Proof:

	Statements	Reasons
In	$\Delta OLE \leftrightarrow \Delta OME$ $\overline{OL} \cong \overline{OM}$ $m\angle OLE = m\angle OME = 90^{\circ}$	Two equal chords of a circle are equidistant from the centre. $\overline{OL} \perp \overline{AB}$ and $\overline{OM} \perp \overline{CD}$
i.	$m\overline{OE} \cong m\overline{OE}$ $\Delta OLE \cong \Delta OME$ $\overline{LE} \cong \overline{ME}$ (i) $m\overline{AL} = \frac{1}{2} m\overline{AB}$	Common side $H.S \cong H.S$ Corresponding sides of congruent triangles.
Now,	$m\overline{DM} = \frac{1}{2}m\overline{CD}$ $m\overline{AL} = m\overline{DM} \qquad \qquad (ii)$ $m\overline{AL} + m\overline{LE} = m\overline{DM} + m\overline{ME}$ $m\overline{AE} = m\overline{DE} \qquad \qquad (iii)$ $m\overline{AB} = m\overline{CD}$ $m\overline{AE} + m\overline{EB} = m\overline{DE} + m\overline{EC}$ $m\overline{AE} + m\overline{EB} = m\overline{AE} + m\overline{EC}$ $m\overline{EB} = m\overline{EC}$	Both are half of equal chords. Adding (i) and (ii). Given From (iii) By cancellation property.

Q.2 AB is the chord of a circle and diameter CD is perpendicular

bisector of \overline{AB} . Prove that $\overline{MAC} = \overline{MBC}$

Given: A circle with centre "O" diameter $\overline{CD} \perp \text{chord } \overline{AB}$ i.e

 $m\angle CEA = m\angle CEB = 90^{\circ}$ and $\overline{AE} \cong \overline{EB}$

To prove: $m\overline{AC} = m\overline{BC}$

Construction: Join C to A and B.

Proof:

Q.3 As shown in fig. find the distance between two parallel chords \overline{AB} and \overline{CD} .

Given: A fig. as shown.

To find: Distance between two parallel chords \overline{AB} and \overline{CD} i.e $m\overline{EF} = ?$

Construction: Join O to A.

Calculations:

$$m\overline{AE} = \frac{1}{2}m\overline{AB} = \frac{1}{2}(6cm) = 3cm$$

$$m\overline{CF} = \frac{1}{2}m\overline{CD} = \frac{1}{2}(8cm) = 4cm$$

$$m\overline{OA} = m\overline{OC} = 5cm$$

In right triangle AOE, by Pythagoras theorem

$$(m\overline{OA})^{2} = (m\overline{OE})^{2} + (m\overline{AE})^{2}$$

$$(5cm)^{2} = (m\overline{OE})^{2} + (3cm)^{2}$$

$$25cm^{2} = (m\overline{OE})^{2} + (9cm^{2})$$

$$m25cm^{2} - 9cm^{2} = (m\overline{OE})^{2}$$

$$16cm^{2} = (m\overline{OE})^{2}$$

$$\sqrt{(m\overline{OE})^{2}} = \sqrt{16cm^{2}}$$

$$m\overline{OE} = 4cm$$

In right triangle COF, by Pythagoras theorem

$$(m\overline{OC})^{2} = (m\overline{CF})^{2} + (m\overline{OF})^{2}$$

$$(5cm)^{2} = (4cm)^{2} + (mOF)^{2}$$

$$25cm^{2} - 16cm^{2} + (m\overline{OF})^{2}$$

$$9cm^{2} = (m\overline{OF})^{2}$$

$$\sqrt{(m\overline{OF})^{2}} = \sqrt{9cm^{2}}$$

$$\overline{m\overline{OF}} = 3cm$$

$$m\overline{EF} = m\overline{OE} + m\overline{OF}$$

$$m\overline{EF} = 4cm + 3cm$$

$$\overline{mEF} = 7cm$$