MISCELLANEOUS EXERCISE – 8

Q. 1 In a $\triangle ABC$, m $\angle A = 60^{\circ}$,

Prove that $(m\overline{BC})^2 = (m\overline{AB})^2 + (m\overline{AC})^2 - (m\overline{AB})(m\overline{AC})$

Solution:

Given: In a ABC, $m\angle A = 60^{\circ}$

To Prove: $(m\overline{BC})^2 = (m\overline{AB})^2 + (m\overline{AC})^2 - (m\overline{AB})(m\overline{AC})$

Proof: In acute angled triangle ABC, by Theorem No. 2

$$(m\overline{BC})^2 = (m\overline{AC})^2 + (m\overline{AB})^2 - 2(m\overline{AB})(m\overline{AD})\dots(i)$$

In right angled ΔACD

$$\cos 60^{\circ} = \frac{m\overline{AD}}{m\overline{AC}} \qquad \frac{1}{2} = \frac{m\overline{AD}}{m\overline{AC}} \qquad (\cos 60^{\circ} = \frac{1}{2})$$

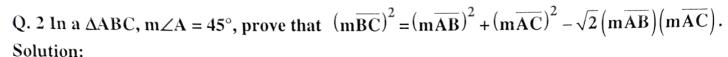
$$m\overline{AD} = \frac{1}{2}m\overline{AC}$$

Put it in equation (i)

$$(m\overline{BC})^2 = (m\overline{AC})^2 + (m\overline{AB})^2 - 2(m\overline{AB}) \frac{1}{2} m\overline{AC}$$

$$\left(m\overline{BC}\right)^{2} = \left(m\overline{AC}\right)^{2} + \left(m\overline{AB}\right)^{2} - 2\left(m\overline{AB}\right) \frac{1}{2} m\overline{AC}$$

$$(m\overline{BC})^2 = (m\overline{AC})^2 + (m\overline{AB})^2 - (m\overline{AB})(m\overline{AC})$$
 Hence proved



Given: In a ABC, $m\angle A = 45^{\circ}$

To prove: $(m\overline{BC})^2 = (m\overline{AB})^2 + (m\overline{AC})^2 - \sqrt{2}(m\overline{AB})(m\overline{AC})$

Proof: In triangle ABC, \angle A is acute so by Theorem 2

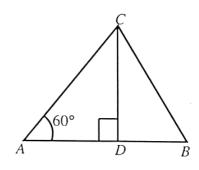
$$(m\overline{BC})^2 = (m\overline{AC})^2 + (m\overline{AB})^2 - 2(m\overline{AB})(m\overline{AD})\dots$$
 (i)

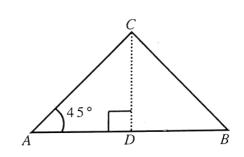
In right angled \triangle ACD

$$\cos 45^{\circ} = \frac{m\overline{AD}}{m\overline{AC}}$$

$$\frac{1}{\sqrt{2}} = \frac{m\overline{AD}}{m\overline{AC}}$$

$$m\overline{AD} = \frac{1}{\sqrt{2}}m\overline{AC}$$





Put it in equation (i)

$$(m\overline{BC})^{2} = (m\overline{AC})^{2} + (m\overline{AB})^{2} - 2(m\overline{AB}) \frac{1}{\sqrt{2}} m\overline{AC}$$

$$(m\overline{BC})^{2} = (m\overline{AB})^{2} + (m\overline{AC})^{2} - \sqrt{2}(m\overline{AB})(m\overline{AC})$$

$$\frac{2}{\sqrt{2}} = \sqrt{2}$$

Q. 3 In a $\triangle ABC$, calculate $m\overline{BC}$ when $m\overline{AB} = 5cm$, $m\overline{AC} = 4cm$, $m\angle A = 60^{\circ}$ Solution:

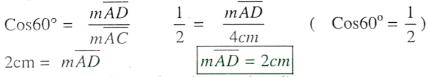
Given: In a $\triangle ABC$ m $\overline{AB} = 5$ cm, m $\overline{AC} = 4$ cm, m $\angle A = 60^{\circ}$

To Find: mBC = ?

Calculations: In triangle ABC, ∠A is acute so by Theorem 2

$$(m\overline{BC})^{2} = (m\overline{AC})^{2} + (m\overline{AB})^{2} - 2(m\overline{AB})(m\overline{AD})$$

$$(m\overline{BC})^{2} = (4cm)^{2} + (5cm)^{2} - 2(5cm)(m\overline{AD}) \dots (i)$$
In right angle \triangle ACD



Putting the corresponding values in equation (i)

$$(m\overline{BC})^{2} = (m\overline{AC})^{2} + (m\overline{AB})^{2} - 2(m\overline{AB})(m\overline{AD})$$

$$= (4\text{cm})^{2} + (5\text{cm})^{2} - 2(5\text{cm})(2\text{cm})$$

$$= 16\text{cm}^{2} + 25\text{cm}^{2} - 20\text{cm}^{2}$$

$$= 41\text{cm}^{2} - 20\text{cm}^{2}$$

$$\left(m\overline{BC}\right)^2 = 2\operatorname{lcm}^2$$

$$\sqrt{\left(m\overline{BC}\right)^2} = \sqrt{21cm^2}$$
 $\overline{mBC} = 4.58 \text{ cm}$

In a $\triangle ABC$, calculate \overline{MAC} when $\overline{MAB} = 5$ cm, $\overline{MBC} = 4\sqrt{2}$ cm, $\overline{MZB} = 45^{\circ}$ Q. 4 Solution:

Given: In a $\triangle ABC$ m $\overline{AB} = 5$ cm, m $\overline{BC} = 4\sqrt{2}$ cm, m $\angle B = 45^{\circ}$

To Find: mAC = ?

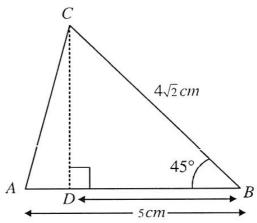
Calculations: In acute angled triangle ABC by theorem 2

$$\left(m\overline{AC}\right)^{2} = \left(m\overline{AB}\right)^{2} + \left(m\overline{BC}\right)^{2} - 2\left(m\overline{AB}\right)\left(m\overline{BD}\right)$$

$$\left(m\overline{AC}\right)^{2} = (5\text{cm})^{2} + \left(4\sqrt{2}cm\right)^{2} - 2(5\text{cm})\left(m\overline{BD}\right) \dots \dots (i)$$

$$m\overline{BD} = ?$$
In right angle ΔBCD

$$\begin{array}{rcl}
\text{Cos45}^{\circ} & = & \frac{m\overline{BD}}{m\overline{BC}} \\
\frac{1}{\sqrt{2}} & = & \frac{m\overline{BD}}{4\sqrt{2}} \\
1 & = & \frac{m\overline{BD}}{4} & \underline{m\overline{BD}} & = 4cm
\end{array}$$



Putting the value of \overline{mBD} in equation (i)

$$\left(m\overline{AC}\right)^{2} = (5\text{cm})^{2} + \left(4\sqrt{2}cm\right)^{2} - 2(5\text{cm})(4\text{cm})$$

$$= 25\text{cm}^{2} + 16(2\text{cm}^{2}) - 40\text{cm}^{2}$$

$$= 25\text{cm}^{2} + 32\text{cm}^{2} - 40\text{cm}^{2}$$

$$= 57\text{cm}^{2} - 40\text{cm}^{2}$$

$$\left(m\overline{AC}\right)^{2} = 17\text{cm}^{2}$$

$$\sqrt{\left(m\overline{AC}\right)^{2}} = \sqrt{17cm^{2}}$$

$$\overline{mAC} = 4.12 \text{ cm}$$

In a triangle ABC, $\overline{mBC} = 21$ cm, $\overline{mAC} = 17$ cm, $\overline{mAB} = 10$ cm. Measure the length of projection of \overline{AC} upon \overline{BC} . Solution:

Given: In a triangle ABC, $\overline{mBC} = 21$ cm, $\overline{mAC} = 17$ cm, $\overline{mAB} = 10$ cm

To Find: Projection of \overline{AC} upon \overline{BC} i.e., $m\overline{DC} = ?$

Calculations: In triangle ABC, ∠C is acute so by theorem 2

$$(m\overline{AB})^2 = (m\overline{AC})^2 + (m\overline{BC})^2 - 2(m\overline{BC})(m\overline{DC})$$

$$(10cm)^2 = (17cm)^2 + (21cm)^2 - 2(21cm)(m\overline{DC})$$

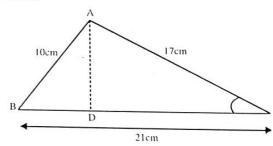
$$100 \text{cm}^2 = 289 \text{cm}^2 + 441 \text{cm}^2 - 42 \text{cm} \left(\text{m} \overline{\text{DC}} \right)$$

$$100 \text{cm}^2 - 289 \text{cm}^2 - 441 \text{cm}^2 = -42 \text{cm} \left(\text{m} \overline{\text{DC}} \right)$$

$$-630 \text{cm}^2 = -42 \text{cm} \left(\text{m} \overline{\text{DC}} \right)$$

$$\frac{-630 \text{cm}^2}{-42 \text{cm}} = \text{m}\overline{\text{DC}}$$

$$\boxed{\text{m}\overline{\text{DC}} = 15 \text{cm}}$$



Q. 6 In a triangle ABC, $m\overline{BC} = 21cm$, $m\overline{AC} = 17cm$, $m\overline{AB} = 10cm$. Calculate the projection of \overline{AB} upon \overline{BC} .

Solution:

Given

$$m\overline{BC} = 21cm$$

$$mAC = 17cm$$

$$mAB = 10cm$$

To Find: Projection of \overline{AB} upon \overline{BC} i.e m \overline{BD} = ? Calculations:

In triangle ABC, $\angle B$ is acute so by theorem 2

$$\left(m\overline{AC}\right)^{2} = \left(m\overline{AB}\right)^{2} + \left(m\overline{BC}\right)^{2} - 2\left(m\overline{BC}\right)\left(m\overline{BD}\right)$$

$$(17 \text{cm})^2 = (10 \text{cm})^2 + (21 \text{cm})^2 - 2(21 \text{cm}) (\text{m}\overline{\text{BD}})$$

$$289 \text{cm}^2 = 100 \text{cm}^2 + 441 \text{cm}^2 - 42 \text{cm} \left(\text{m} \overline{\text{BD}} \right)$$

$$289cm^2 = 541cm^2 - 42cm(m\overline{BD})$$

$$289 \text{cm}^2 - 541 \text{cm}^2 = -42 \text{cm} \left(\text{m} \overline{\text{BD}} \right)$$

$$-252$$
cm² = -42 cm $\left(m\overline{BD}\right)$

$$\frac{-252 \text{cm}^2}{-42 \text{cm}} = \text{m}\overline{\text{BD}}$$

$$m\overline{BD} = 6cm$$

Q. 7 In a $\triangle ABC$, a=17cm, b=15cm and c=8cm. Find $m\angle A$.

Solution:

Given: In a \triangle ABC, a = 17cm, b = 15cm, c = 8cm

To Find: $m\angle A = ?$

Calculations:

Sum of squares of two sides = $b^2 + c^2$

$$= (15cm)^2 + (8cm)^2$$
$$= 225cm^2 + 64 cm^2$$

$$= 289 \text{ cm}^2 \dots (i)$$

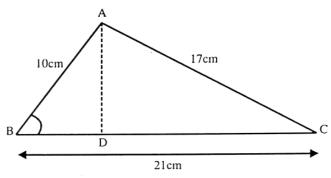
Square of length of third side = a^2

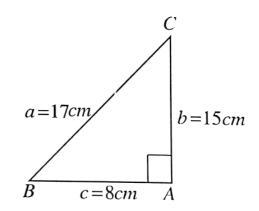
$$= (17cm)^2$$

= $289cm^2$ (ii)

$$a^2 = b^2 + c^2$$

The result show that the triangle ABC is right angled triangle with side a = 17cm as hypotenuse. The angle opposite to the hypotenuse is right angle i.e $m\angle A = 90^{\circ}$





8. In a \triangle ABC, a = 17cm, b = 15cm and c = 8cm find m \angle B.

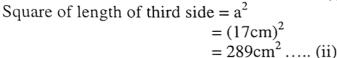
Solution:

Given: In a $\triangle ABC$, a = 17cm, b = 15cm, c = 8cm

To Find: $m \angle B = ?$

Calculations:

Sum of squares of two sides = $b^2 + c^2$ = $(15cm)^2 + (8cm)^2$ = $225cm^2 + 64 cm^2$ = $289 cm^2 \dots$ (i)



From (i) and (ii)

$$a^2 = b^2 + c^2$$

The result show that the triangle ABC is right angled triangle with $m\angle A = 90^{\circ}$

In triangle ABC,

$$\tan m \angle B = \frac{Per}{Base} = \frac{15cm}{8cm}$$

$$m \angle B = tan^{-1} \frac{15}{8} \qquad m \angle B = (61.9)^{\circ}$$

a=17cm

b=15cm

Q.9 Whether the triangle with sides 5cm, 7cm, 8cm is acute, obtuse or right angled. Solution:

In a triangle ABC, let a = 5cm, b = 7cm, c = 8cm

Sum of squares of two sides = $a^2 + b^2$

=
$$(5cm)^2 + (7cm)^2$$

= $25cm^2 + 49cm^2$
= $74cm^2$ (i)

Square of length of 3^{rd} side = c^2

=
$$(8cm)^2$$

= $64cm^2$ (ii)

From (i) and (ii)

$$74 \text{cm}^2 > 64 \text{cm}^2 \text{ i.e.}$$

 $a^2 + b^2 > c^2$

The result shows that the triangle with sides 5cm, 7cm, 8cm is acute angled triangle. It is acute angled triangle.

Q.10 Whether the triangle with sides 8cm, 15cm, 17cm is acute, obtuse or right angled. Solution:

In a triangle ABC let a = 8cm, b = 15cm, c = 17cm

Sum of squares of two sides = $a^2 + b^2$

=
$$(8 \text{cm})^2 + (15 \text{cm})^2$$

= $64 \text{cm}^2 + 225 \text{ cm}^2$
= 289 cm^2 (i)

Square of length of 3^{rd} side = c^2

$$= (17 \text{cm})^2$$

= 289cm^2 (ii)

From (i) and (ii)

i.e
$$a^2 + b^2 = c^2$$

Result shows that triangle with sides a = 8cm, b = 15cm and c = 17cm is right angled triangle.