Miscellaneous Exercises - 5

Q.1 Mul	tiple	choice	ques	stions	Four
possible a	nswers	are give	n for	the fo	ollowing
questions	. Tick	mark	()	the	correct
answer.					

- The different number of ways to describe a set are
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 2. The set $\{x \mid x \in W \land x \le 101\}$ is
 - (a) infinite set
- (b) subset
- (c) Null set
- (d) finite set
- 3. A collection of well-defined distinct objects is called
 - (a) subset
- (b) power set
- (c) set
- (d) none of these
- 4. If $A \subseteq B$ then $A \cup B$ is equal to
 - (a) A
- (b) B

Ø

A set $Q = \frac{a}{b} | a, b \in Z \land b \neq 0$ is called a

set of

- (a) Whole numbers
- (b) Natural numbers
- (c) Irrational numbers
- (d) Rational numbers
- 6. If $A \subseteq B$ then A - B is equal to
 - (a) A
- (b) В
- (c) ϕ
- (d) None of these
- If A and B are disjoint sets, then $A \cup B$ is 7. equal to
 - (a) A
- (b) B
- (c) ϕ
- (d) $B \cup A$
- 8. The number of elements in power set $\{1, 2, 3\}$ is
 - (a) 4
- (b) 6
- (c) 8
- (d)

- 9. A set with no element is called
 - (a) subset
- (b) empty set
- (c) singleton set (d) super set
- 10. If $A \subseteq B$ then $A \cap B$ is equal to
 - (a) A
- (b)
- (c) ϕ
- (d) None of these
- 11. The set having only one element is called
 - (a) Null set
- (b) power set
- (c) singleton set (d) subset
- **12.** The relation $\{(1,2),(2,3),(3,3)(3,4)\}$ is
 - (a) onto function
 - (b) into function
 - (c) not a function
 - (d) one-one function
- 13. If $A \subseteq B$ and $B \subseteq A$, then
 - (a) A = B
- (b) $A \neq B$
- (c) $A \cap B = \phi$ (d) $A \cup B = \phi$
- 14. Power set of an empty set is
 - (a) ϕ
- (b) $\{a\}$
- (c) $\{\phi, \{a\}\}$
- (d) $\{\phi\}$
- 15. If number of elements in set A is 3 and in set B is 4, then number of elements in A×B is
 - (a) 3
- (b) 4
- (c) 12
- (d) 7
- **16.** Point (-1,4) lies in the quadrant
 - (a) I
- (b) II
- (c) III
- (d) IV
- 17. The domain of R
 - $=\{(0,2),(2,3),(3,3)(3,4)\}$ is
 - (a) $\{0,3,4\}$
- (b) $\{0,2,3\}$
- (c) $\{0,2,4\}$
- (d) $\{2,3,4\}$
- 18. The point (-5, -7) lies in ... quadrant
 - (a) I
- (b) II
- (c) III
- (d) IV

19.	If number of elements in se A is 3 and in	29.	N ∪ W =
	set B is 2, then number of binary		(a) ϕ (b) $\{0\}$
	relations in A×B is		(c) N (d) W
	(a) 2^3 (b) 2^6	30.	y co-ordinate of every pint on $x - axis$ is.
	(c) 2^8 (d) 2^2		(a) +ve (b) -ve
20.	$(A \cup B) \cup C$ is equal to		(c) zero (d) 1
	(a) $A \cap (B \cup C)$ (b) $(A \cup B) \cap C$)	31.	,
	(c) $A \cup (B \cup C)$ (d) $A \cap (B \cap C)$		set?
21.	If $A \cap B = \phi$, then set A and B aresets.		(a) $\{a,b,c,a\}$ (b) $\{1,2,3,2\}$
	(a) sub (b) over lapping		$\{ , m, n, o \}$ $\{ 0, 1, 2, 3, 1 \}$
	(c) disjoint (d) power	32.	The domain of $\{(a,b), (b,c), (c,d)\}\$ is
22.	$A \cup (B \cap C)$ is equal to		(a) $\{a,b,c\}$ (b) $\{b,c,d\}$
	(a) $(A \cup B) \cap (A \cup C)$		(c) $\{a,b\}$ (d) $\{a,b,c,d,\}$
	(b) $A \cap (B \cap C)$	33.	1
	(c) $(A \cap B) \cap (A \cap C)$ (d) $A \cup (B \cup C)$		(a) U (b) ϕ
23.	The range of $\{(a,a), (b,b), (c,c)\}\$ is		(c) impossible (d) union
	(a) {a,b} (b) {a,b,c}	34.	$A \cup A^c = \dots$
	(c) $\{a\}$ (d) ϕ		(a) U (b) A
24.	The complement of ϕ is		(c) A^c (d) ϕ
	(a) U (b) φ	35.	8
	(c) impossible (d) union		(a) $P \subseteq N \subseteq Z \subseteq W$
25.	$A \cap A^c = \dots$		(b) $P \subseteq N \subseteq W \subseteq Z$
	(a) U (b) A		(c) $P \subseteq W \subseteq N \subseteq Z$
	(c) A^c (d) ϕ	36.	(d) $P \subseteq Z \subseteq N \subseteq W$ $W - N = \dots$
26.	Venn diagram was first used by	50.	(a) ϕ (b) $\{0\}$
	(a) John Venn		(c) N (d) W
	(b) Netwon	37.	
	(c) Arthur Cayley		(a) ϕ (b) $\{0\}$
	(d) John Napier		(c) N (d) W
27.	The set $\{x \mid x \in A \text{ and } x \notin B\}$ is	38.	The relation $\{(a,b),(b,c),(a,d),\}$ is
	(a) $A \cup B$ (b) $A \cap B$		(a) a function (b) not a function
	(c) $A - B$ (d) $B - A$		(c) range (d) domain ₀₅₍₀₉₁₎
28.	The Range of R	39.	x co-ordinate of every pint on $y - axis$ is.
	$=\{(1,3),(2,2),(3,1)(4,4)\}$ is		(a) +ve (b) -ve
	(a) {1,2,4} (b) {3,2,4}		(c) zero (d) 1
	(c) $\{1,2,3,4\}$ (d) $\{1,3,4\}$		

40.	Whi	Which of the following is true?										
		$W\subseteqN$										
	(b)	$Z \subseteq W$										
	(c)	$N \subseteq P$										
	(d)	$P\subseteq W$										
41.	A su	bset of A×A	is call	ledin A.								
	(a)	set	(b)	relation								
	(c)	function	(d)	into function								
42.	Whi	ich of the following is true?										
	(a)	N and W \subseteq 2	Z									
	(b)	$P \text{ and } O \subseteq W$	7									
	(c)	O and $E \subseteq W$	/									
	(d)	$P and E \subseteq N$										
43.	If x	$\in A$ and $x \in$	B , the	en $\{x\}$ is equal to								
	(a)	A - B	(b)	A^{c}								
	(c)	$A \cap B$	(d)	B c								
44.	The	point $(4, -6)$	lies in	Quadrant								
	(a)	I	(b)	II								
	(c)	III	(d)	IV								
45.	If f:	$A \rightarrow B$ and ra	ange (of $f \neq B$, then f is								
		into function										
		onto function										
		bijective fun function	Ction									
46	. ,		nge c	of $f = B$, then f is								
70.	an		inge e	n = B, then $n = 1$								
	, ,	into function										
		onto function										
		bijective fun- function	Ction									
47.	, ,		eleme	ents common with								
	set E	3 then set A is	calle	dset.								
	` '	sub	` '	overlapping								
		disjoint	(d)	super								
48.		E =	(b)	0								
	(a)	,	(d)									
	(c)	C	(u)									

- **49.** Which of the following is commutative law?
 - (a) $A \cup (B \cup C) = (A \cup B) \cup C$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
 - (c) $A \cap B = B \cap A$
 - (d) $A \cup B^{C} = A^{C} \cap B^{C}$
- **50.** Which of the following is associative law of intersection?
 - (a) $A \cup (B \cup C) = (A \cup B) \cup C$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **51.** Which of the following is distributive property of intersection over union?
 - (a) $A \cup (B \cup C) = A \cup (B \cup C)$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 52. $N \cap W = \dots$
 - (a)
- (b) $\{0\}$
- (c) N
- (d) W
- **53.** If A is subset of U, then $(A^{C})^{C} = \dots$
 - (a) A
- (b) A c
- (c) ϕ^{C}
- (d) U^c
- **54.** If two sets have some elements common but not all are called....sets.
 - (a) sub
- (b) overlapping
- (c) disjoint
- (d) super
- **55.** Which of the following is De-Morgan's law?
 - (a) $(A \cup B) \cup C = A \cup (B \cup C)$
 - (b) $A \cap B(^{C} = A^{C} \cup B^{C})$
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- **56.** Which of the following is associative law of union?
 - (a) $A \cup (B \cup C) = (A \cup B) \cup C$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 57. $O E = \dots$
 - (a)
- (b) O
- (c) E
- (d) Z
- 58. If union and intersection of two sets are equal then sets aresets.
 - (a) disjoint
- (b) overlapping
- (c) equal
- (d) super
- 59. Which of the following is complete description of Real numbers?
 - (a) $N \cup W = R$ (b)
- (b) $O \cup E = R$
 - (c) $P \cup Q = R$
- (d) $Q \cup Q' = R$
- **60.** $E O = \dots$
 - (a) \$\phi\$
- (b) O
- (c) E
- (d) Z
- **61.** Two sets having no common element, are called sets.
 - (a) subet
- (b) overlapping
- (c) disjoint
- (d) super

62. If $x \in U$ and $x \notin A$, then $\{x\}$ is equal

to.....

- (a) U^c
- (b) A^C
- (c) ϕ^{C}
- (d) A U
- 63. $O \cap E = \dots$
 - (a) **\$**
- (b) O
- (c) E
- (d) Z
- **64.** A and A^C aresets.
 - (a) universal
- (b) overlapping
- (c) disjoint
- (d) super
- **65.** Which of the following is distributive property of union over intersection?
 - (a) $A \cup (B \cup C) = A \cup (B \cup C)$
 - (b) $A \cap (B \cap C) = (A \cap B) \cap C$
 - (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 66. If $x \in A$ and $x \notin B$, then $\{x\}$ is equal to.........
 - (a) A B
- (b) B-A
- (c) $A \cap B$
- (d) A^c

ANSWER KEY

1	С	2	d	3	С	4	b	5	d	6	С	7	d	8	С
9	b	10	a	11	С	12	С	13	a	14	d	15	С	16	b
17	b	18	С	19	b	20	С	21	С	22	a	23	b	24	a
25	d	26	a	27	С	28	С	29	d	30	С	31	С	32	a
33	b	34	a	35	b	36	b	37	a	38	b	39	С	40	d
41	b	42	a	43	С	44	d	45	a	46	b	47	a	48	d
49	С	50	b	51	d	52	С	53	a	54	b	55	b	56	a
57	b	58	С	59	d	60	С	61	С	62	b	63	a	64	С
65	С	66	a												•

Q.2 Write short answers of the following questions.

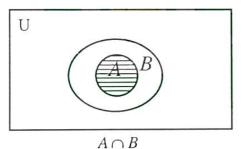
(i) Define a subset and give one example.

Subset: If A and B are two sets and every element of A is an element of B then set A is called subset of set B. It is denoted by $A \subseteq B$.

Example:
$$A = \{1, 2\}, B = \{1, 2, 3, 4\}$$

As all elements of Set A are also present in Set B. Therefore $A \subseteq B$.

(ii) Write all subsets of the set {a, b}


Solution:

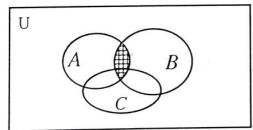
All subsets
$$(2^n = 2^2 = 4)$$

{ }, {a}, {b}, {a, b}

(iii) Show $A \cap B$ by Venn Diagram when $A \subseteq B$.

Solution:

If $A \subseteq B$ then $A \cap B = A$



Horizontal line segments show A∩B

(iv) Show by Venn Diagram $A \cap (B \cup C)$

Solution:

 $A \cap (B \cup C)$ by Venn diagram

- Horizontal line segments and squares show B∪C.
- $A \cap (B \cup C)$ is shown by squares.

(v) Define intersection of two sets.

Intersection of two sets:

The intersection of two sets A and B, written as $A \cap B$ (read as A intersection B) is the set consisting of all the common elements of A and B.

(vi) Define a function.

Function: Suppose A and B are two nonempty sets, then relation $f : A \rightarrow B$ is called a function if

- (i) Dom f = A
- (ii) Every $x \in A$ appears in one and only and ordered pair in f.
- (vii) Define an one one function.

One – one function:

A function $f: A \rightarrow B$ is called one – one function, if all distinct elements of A have distinct images in B, i.e:

$$f(x_1) = f(x_2)$$
 $x_1 = x_2 \in A$ or $\forall x_1 \neq x_2 \in A$ $f(x_1) \neq f(x_2)$

(viii) Define an onto function.

Onto function:

A function $f: A \rightarrow B$ is called an onto function, if every element of set B is an image of at least one element of set A.

i.e. Range of f = B

(ix) Define a Bijective function.

Bijective function:

A function $f: A \rightarrow B$ is called bijective function iff function f is one-one and onto.

(x) Write De Morgan's law.

De Morgan's Law:

If two sets A and B are the sub sets of U then De-Morgan's laws are expressed as

(i)
$$(A \cup B)' = A' \cap B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

Q.3 Fill in the Blanks

- i. If $A \subseteq B$ then $A \cup B =$ ____.
- ii. If $A \cap B = \phi$ then A and B are _____.
- iii. If $A \subseteq B$ and $B \subseteq A$ then_____.
- iv. $A \cap (B \cup C) = \underline{\hspace{1cm}}$.
- $V. \quad A \cup (B \cap C) = \underline{\hspace{1cm}}.$
- vi. The complement of U is _____.
- vii. The complement of ϕ is _____.
- viii. $A \cap A^c = \underline{\hspace{1cm}}$.
- ix. $A \cup A^c =$ ____.
- x. The set $\{x \mid x \in A \text{ and } x \notin B\} = \underline{\hspace{1cm}}$.
- xi. The point (-5, -7) lies in _____ quadrant.
- xii. The point (4,-6) lies in ____quadrant.
- xiii. The y co-ordinate of every point is _____on x-axis.
- xiv. The x co-ordinate of every point is _____on y-axis.
- xv. The domain of $\{(a,b), (b,c), (c,d)\}$ is
- xvi. The range of {(a,a), (b,b), (c,c)} is _____.

- xvii. Venn-diagram was first used by_____.
- xviii, A subset of A x A is called the ____in A.
- xix. If $f: A \longrightarrow B$ and range of f=B, then f is an _____function.
- xx. The relation of $\{(a,b), (b,c), (a,d)\}$ is _____ function.

Answers:

- (i) B (ii) Disjoint sets
- (iii) A = B (iv) $(A \cap B) \cup (A \cap C)$
- $(v) \qquad (A \cup B) \cap (A \cup C)$
- (vi) ϕ (vii) U
- (viii) ϕ (ix) U
- (x) $A \setminus B$ (xi) IIIrd
- (xii) IVth
- (xiii) Zero (xiv) Zero
- (xv) {a, b, c}
- (xvi) {a, b, c} (xvii) John venn
- (xviii) Binary relation
- (xix) onto (xx) not