MISCELLANEOUS EXERCISE – 2

0.1 Multiply Choice Questions.

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

1. $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to

- (a) $\frac{1}{\alpha}$ (b) $\frac{1}{\alpha} \frac{1}{\beta}$ (c) $\frac{\alpha \beta}{\alpha \beta}$ (d) $\frac{\alpha + \beta}{\alpha \beta}$

2. Product of cube roots of unity is

- (a) 0
- (b) 1
- (c) -1
- (d)

3. Roots of the equation $4x^2-5x+2=0$ are

- (a)
- irrational (b) imaginary
- (c) rational
- (d) none of these

4. Two square roots of unity are

- (a) 1,-1
- (b) $1, \omega$
- (c) $1,-\omega$
- (d) ω, ω^2

5. Roots of the equation $4x^2-4x+1=0$ are

- (a)
- real, equal (b) real, unequal
- imaginary (c)
- (d) irrational

6. If α, β are the roots of $7x^2-x+4=0$ then $\alpha\beta$ is.....

- (a) $\frac{-1}{7}$ (b) $\frac{4}{7}$ (c) $\frac{7}{4}$ (d) $\frac{-4}{7}$

7. If $b^2 - 4ac < 0$ then the roots of $ax^2+bx+c=0$ are

- irrational (a)
- (b) rational
- (c) imaginary
- (d) None of these

8. If α, β are the roots of $px^2+qx+r=0$, then sum of the roots 2α and 2β is

- (a) $\frac{-q}{p}$ (b) $\frac{r}{p}$ (c) $\frac{-2q}{p}$ (d) $-\frac{q}{2p}$

9. If α, β are the roots of $3x^2+5x-2=0$ then $\alpha + \beta$ is.....

- (a) $\frac{5}{3}$ (b) $\frac{3}{5}$ (c) $\frac{-5}{3}$ (d) $\frac{-2}{3}$

10. If $b^2 - 4ac > 0$ and is a perfect square, then roots of $ax^2 + bx + c = 0$ are

- irrational, equal (a)
- (b) rational, equal
- (c) rational, unequal
- (d) irrational, unequal

11. Cube roots of -1 are

- (a) $-1, -\omega, -\omega^2$ (b) $-1, \omega, -\omega^2$
- (c) $-1, -\omega, \omega^2$ (d) $1, -\omega, -\omega^2$

12. Sum of the cube roots of unity is

- (a) 0 (b) 1 (c) -1 (d) 3

13. If $b^2 - 4ac > 0$, but not a perfect square	23. If roots of a quadratic equation are real,
then roots of $ax^2+bx+c=0$ are	rational and unequal then possible value
(a) imaginary (b) rational	of Disc. is
(c) irrational (d) None of these	(a) 0 (b) 36
14. If α , β are the roots of $x^2-x-1=0$, then	(c) 40 (d) -25
product of the roots 2α and 2β is	24. If roots of an quadratic equation are
(a) -2 (b) 2	real and distinct then Disc. is
(c) 4 (d) -4	(a) positive (b) negative
15. Disc. of $x^2 - 3x + 3 = 0$ is	(c) zero (d) imaginary
(a) 6 (b) 12	25. If ω and ω^2 are complex cube root of
(c) 21 (d) -3	unity, then $\omega.\omega^2 = \dots$
16. The discriminant of $ax^2+bx+c=0$ is	(a) 1 (b) -1
(a) b^2-4ac (b) b^2+4ac	(c) 0 (d) 2
(c) $-b^2+4ac$ (d) $-b^2-4ac$	26. If $b^2 - 4ac = 0$, then roots of
	$ax^2 + bx + c = 0$ are
17. $\alpha^2 + \beta^2$ is equal to	(a) irrational, equal
(a) $\alpha^2 - \beta^2$ (b) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	(b) rational, equal
(a) $\alpha \beta$ (b) $\frac{\alpha^2}{\alpha^2} + \frac{\beta^2}{\beta^2}$	(c) rational, unequal
(c) $(a + \beta)^2 - 2\alpha\beta$ (d) $\alpha + \beta$	(d) irrational, unequal
18. If roots of a quadratic equation are	27. If for a quadratic equation $b^2 - 4ac = 49$,
irrational and distinct, then Disc. is	then roots are real and
(a) perfect square	(a) equal (b) unequal
(b) not perfect square	(c) irrational (d) imaginary
(c) zero	28. If roots of a quadratic equation are
(d) negative	imaginary, and unequal, the possible
19. Disc. of $2x^2 - 7x + 1 = 0$ is	value of Disc. is
(a) 47 (b) 41	(a) 0 (b) 9
(c) 40 (d) 51	(c) 8 (d) -9
20. The nature of the roots of equation	29. If for a quadratic equation $b^2 - 4ac = 0$,
$ax^2+bx+c=0$ is determined by.	then roots are.
(a) Sum of the roots	(a) complex (b) irrational
(b) Product of the roots	(c) repeated (d) distinct
	30. The roots of $x^2 + 8x + 16 = 0$ are
(c) Synthetic division	(a) imaginary (b) equal
(d) Discriminant	(c) unequal (d) irrational
21. If for a quadratic equation	31. If $\omega = \frac{-1 - \sqrt{-3}}{2}$, then $\omega^2 =$
b^2 - 4ac = 205, then roots are	$\frac{31.11 \text{W}}{2} = \frac{1}{2}$, then $\frac{\text{W}}{2} = \dots$
(a) complex (b) irrational	$-1 \pm \sqrt{3}$ $-1 + \sqrt{3}$
(c) rational (d) equal	(a) $\frac{-1 \pm \sqrt{3}}{2}$ (b) $\frac{-1 + \sqrt{3}}{2}$ (c) $\frac{-1 + \sqrt{-3}}{2}$ (d) $\frac{-1 \pm \sqrt{-3}}{2}$
22. If roots of a quadratic equation are	1. \(\sigma 2 \)
equal, then Disc. is	(c) $\frac{-1+\sqrt{-3}}{}$ (d) $\frac{-1\pm\sqrt{-3}}{}$
(a) positive (b) negative	2 2
(c) zero (d) irrational	

32. If 1,	ω, ω² are cu	be ro	ot of u	nity, then	
$1+\omega$	$+\omega^2 = \dots$	••			
(a)					
(c)	-	(d)			
33. II ro	ots of a qu	adrai ·	tic equ	ation are	:
magi (a)	inary, then D	isc. is	•••••		
(a) (c)	positive zero	(d)	negativ	ve 201	
	root of 64 ar			1111	
	$-4, -4\omega, -4$			4 16w	
	$4, 4\omega, 4\omega^2$		(d)		
	a quadratic			(+)	
	4ac = -47, the				
(a)			rationa		
	rational	. ,			
36. Which	ch of the	foll	owing	is true	,
	ription of n				
	ratic equatio				
	real, irration	_			
	real, imagina				
	real, irration		_	,	
	complex, rep				
	oots of a qu nal a nd disti r				
	perfect squa			. 10	
	not perfect s				
	zero	•			
(d)	negative				
38. If ω	is complex ci	ube r	oot of u	nity, ther	1
$\omega^{63} =$					
(a)	ω	(b)	1		
(- /	-w	` '	$-\omega^2$		
	ots of a quad				
	nal and equa		en poss	ible value	e
	sc. is		26		
(a)	0	(b)	-49		
(c)		, ,		unity ther	,
	is complex cu =	ine r	oot or u	inity, thei	1
		(b)	-(1)		
(a) (c)		(b)			
		, ,			
41. (-1+	$\sqrt{-3}$) ³ =		••••		
(a)	8	(b)	1		
(c)		(d)	-28		

44.	(9+4)	$(\omega + 4\omega^2)^3 =$	•••••	,
	(a)	15	(b)	25
	(c)	15 125	(d)	$(17)^3$
		•••••		,
	(a)	ω^2	(b)	ω
	(c)	ω^2 1	(d)	0
46.	Which	n of the fo	llowi	ng shows "the
	produ numb		cons	ecutive positive
	(a)	x(x+1)	(b)	x(x+2)
	(c) x ((x+3)	(d)	x(x+4)
				ot of unity, then
		=		• •
	(a)	0	(b)	ω
	(c)	$\frac{0}{\omega^2}$	(d)	$-\omega^2$
48.			be ro	ot of unity, then
		• • • • • • • • • • • • • • • • • • • •		
	(a)	$\omega \ \omega^2$	(b)	$-\omega$
49.		ω, ω² are cul ² =		ot of unity, then
				(1)
	(a) (c)	$-\omega \ \omega^2$	(d)	-m ²
	(0)		(u)	w
50.	"Five	less than t	hree	times a certain
		er" is		
	(a)	3x-5	(b)	3x + 5
		5x + 3		
51.	If 1,	ω, ω ^z are cu	be ro	ot of unity, then
		$p^2 = \dots$		
	(a)	1	(b)	
	(c)	ω^3	(d)	$2\omega^2$

42. Cube roots of -27 are......

43. If ω is complex cube root of unity, then $\omega^{-27} = \dots$

(b) -1

(d) ω^2

(a) $3, -3\omega, 3\omega^2$

(c) $-3,3\omega,3\omega^2$ (d) $3,3\omega,-3\omega^2$

(a) 1

(c) ω

(b) $-3, -3\omega, -3\omega^2$

- 52. If roots of a quadratic equation are real, irrational and unequal then possible value of Disc. is.....
 - (a)
- (b) 9
- (c) 5
- (d) -7
- 53. $(1-\omega-\omega^2)^5 = \dots$
 - (a)
- (b) 16
- (c) 32
- (d) 64
- 54. If length and width of a rectangle are x and y respectively then which of the following shows perimeter?
 - (a)
 - $(x+y)^2$ (b) 2x-2y
 - (c)
- (d) 2(x+y)
- 55. If ω is complex cube root of unity, then $\omega^{23} = \dots$
 - (a) ω
- (b) $-\omega$
- (c)
- (d) $-\omega^2$
- 56. Which of the following are symmetric functions of the roots of a quadratic equation?
 - (a) $\alpha^2 + \beta^2$ (b) $\alpha^3 + \beta^3$
 - (c) $\frac{1}{\alpha} + \frac{1}{\beta}$ (d) all of these
- 57. If ω is complex cube root of unity, then $\omega^{-5} = \dots$
 - ω (a)
- (b) 1
- (c) $-\omega$
- (d) $-\omega^2$
- 58. The equation $x^4 49x^2 + 36x + 252 = 0$ is called equation.
 - quadratic (a)
- (b) quartic
- (c) linear
- (d) cubic
- 59. $(1-3\omega-3\omega^2)^3 = \dots$
 - 12 (a)
- (b) 16
- -125(c)
- (d) 64
- 60. Cube roots of 8 are.....
 - (a) 2, 2ω , $2\omega^2$
 - (b) $-2, -2\omega, -2\omega^2$
 - (c) $2, -2\omega, -2\omega^2$
 - (d) $2, -2\omega, 2\omega^2$

- 61. The sum of five times a number and the square of the number is
 - $5x^2 + x$ (a)
- (b) $5x + x^2$
- (c)
- $(5x+x)^2$ (d) $5(x+x^2)$

ANSWER KEY

1.	d	2.	b	3.	b	4.	a	5.	a
6.	b	7.	С	8.	С	9.	С	10.	С
11.	a	12.	a	13.	С	14.	d	15.	d
16.	a	17.	С	18.	b	19.	b	20.	d
21.	b	22.	С	23.	b	24.	a	25.	a
26.	b	27.	b	28.	d	29.	С	30.	b
31.	С	32.	a	33.	b	34.	С	35.	d
36.	С	37.	a	38.	b	39.	a	40.	d
41.	а	42.	b	43.	a	44.	С	45.	b.
46.	a	47.	d	48.	a	49.	a	50.	a
51.	b	52.	С	53.	С	54.	d	55.	С
56.	d	57.	a	58.	b	59.	d	60.	a
61.	b								

- Q.2. Write short answers of the following questions.
- Discuss the nature of roots of the following equations.

(a)
$$x^2 + 3x + 5 = 0$$

Solution:

$$x^2 + 3x + 5 = 0$$
$$ax^2 + bx + c = 0$$

$$\Rightarrow$$
 a=1, b=3, c=5

Disc. =
$$b^2 - 4ac$$

= $(3)^2 - 4(1)(5)$
= $9-20$
= $-11 < 0$

So roots of equation are imaginary

(b)
$$2x^2 - 7x + 3 = 0$$

Solution:

$$2x^2 - 7x + 3 = 0$$

$$ax^2 + bx + c = 0$$

$$\Rightarrow$$
 a=2, b=-7, c=3

Disc.
$$= b^2 - 4ac$$

$$= (-7)^{2} - 4 (2) (3)$$

$$= 49 - 24$$

$$= 25$$

$$= (5)^{2} > 0$$

As Disc. is positive and perfect square so roots of equation are real, rational and distinct.

(c)
$$x^2 + 6x - 1 = 0$$

Solution:

$$x^{2} + 6x - 1 = 0$$

$$ax^{2} + bx + c = 0$$

$$\Rightarrow a = 1, b = 6, c = -1$$
Disc. = $b^{2} - 4ac$
= $(6)^{2} - 4(1)(-1)$
= $36 + 4$
= $40 > 0$

As Disc. is positive and not perfect square, so roots of equations are real, irrational and unequal.

(d)
$$16x^2 - 8x + 1 = 0$$

Solution: $16x^2 - 8x + 1 = 0$

$$ax^{2} + bx + c = 0$$

$$\Rightarrow a = 16, b = -8, c = 1$$
Disc. = $b^{2} - 4ac$
= $(-8)^{2} - 4(16)(1)$
= $64 - 64$
= 0

So roots of equation are real rational and equal.

(ii) Find
$$\omega^2$$
, if $\omega = \frac{-1 + \sqrt{-3}}{2}$

Solution:
$$\omega = \frac{-1 + \sqrt{-3}}{2}$$

Taking square of both sides, we get

$$\omega^{2} = \left(\frac{-1 + \sqrt{-3}}{2}\right)^{2}$$

$$\omega^{2} = \frac{\left(-1 + \sqrt{-3}\right)^{2}}{\left(2\right)^{2}}$$

$$\omega^{2} = \frac{\left(-1\right)^{2} + \left(\sqrt{-3}\right)^{2} + 2\left(-1\right)\sqrt{-3}}{4}$$

$$\omega^{2} = \frac{1 + \left(-3\right) - 2\sqrt{-3}}{4}$$

$$\omega^2 = \frac{-2 - 2\sqrt{-3}}{4}$$

$$\omega^2 = \frac{\cancel{2}(-1 - \sqrt{-3})}{\cancel{4}2}$$

$$\omega^2 = \frac{-1 - \sqrt{-3}}{2}$$

(iii) Prove that the sum of all the cube roots of unity is zero.

Solution: We have cube roots of unity

$$1, \omega = \frac{-1+\sqrt{3}}{2}, \omega^2 = \frac{-1-\sqrt{-3}}{2}$$

Taking sum, we get

$$1+\omega + \omega^2 = 1 + \frac{\left(-1+\sqrt{-3}\right)}{2} + \frac{\left(-1-\sqrt{-3}\right)}{2}$$

$$1+\omega+\omega^2=1+\frac{(-1+\sqrt{-3})+(-1-\sqrt{-3})}{2}$$

$$1+\omega + \omega^2 = \frac{2 + (-1 + \sqrt{3} - 1 - \sqrt{3})}{2}$$

$$1+\omega+\omega^2=\frac{2-2}{2}$$

$$1+\omega+\omega^2=\frac{0}{2}$$

$$1+\omega+\omega^2=0$$

It is proved that sum of all the cube roots of unity is zero.

(iv) Find the product of complex cube roots of unity.

Solution: Following are the complex cube roots of unity

$$\omega = \frac{-1 + \sqrt{-3}}{2} \omega^2 = \frac{-1 - \sqrt{-3}}{2}$$

Taking product, we get

$$\omega.\omega^2 = \left(\frac{-1+\sqrt{-3}}{2}\right)\left(\frac{-1-\sqrt{-3}}{2}\right)$$

$$\omega^{3} = \frac{(-1)^{2} - (\sqrt{-3})^{2}}{4} \qquad \boxed{\because (a+b)(a-b) = a^{2} - b^{2}}$$

$$\omega^3 = \frac{1 - (-3)}{4}$$

$$\omega^3 = \frac{1+3}{4}$$
$$\omega^3 = \frac{4}{4}$$

$$\omega^3 = 1$$

Product of complex cube roots of unity is 1.

(v) Show that $x^3+y^3 = (x + y)(x + \omega y)(x + \omega^2 y)$ Solution: Let

R.H.S. =
$$(x + y) (x + \omega y) (x + \omega^2 y)$$

= $(x+y) [x^2 + \omega^2 xy + \omega xy + \omega^3 y^2]$
= $(x+y) [x^2 + xy (\omega^2 + \omega) (1)y^2]$
= $(x+y) [x + xy (-1) + y^2]$
= $(x+y) (x^2 - xy + y^2)$
= $x^3 + y^3 = L.H.S.$

(vi) Evaluate $\omega^{37} + \omega^{38} + 1$

Solution:

$$\begin{split} \omega^{37} + \omega^{38} + 1 &= \omega.\omega^{36} + \omega^{2}.\omega^{36} + 1 \\ &= \omega (\omega^{3})^{12} + \omega^{2} (\omega^{3})^{12} + 1 \\ &= \omega (1)^{12} + \omega^{2} (1)^{12} + 1 \\ &= \omega + \omega^{2} + 1 \qquad (\because \omega^{3} = 1) \\ &= 0 \qquad (\because 1 + \omega + \omega^{2} = 0) \end{split}$$
 (vii) Evaluate $(1 - \omega + \omega^{2})^{6}$

Solution:

$$(1 + \omega^{2} - \omega)^{6} = (-\omega - \omega)^{6} \qquad (\because \omega^{2} = -\omega)$$

$$= (-2\omega)^{6}$$

$$= (-2)^{6} (\omega)^{6}$$

$$= 64\omega^{6}$$

$$= 64(\omega^{3})^{2} \qquad (\because \omega^{3} = 1)$$

$$= 64(1)^{2}$$

$$= 64$$

(viii) If ω is cube root of unity, form an equation whose roots are 3ω and $3\omega^2$.

Solution:

Since 3ω and $3\omega^2$ are the roots of the required equation.

Sum of roots

$$S = 3\omega + 3\omega^{2}$$

$$S = 3(\omega + \omega^{2})$$

$$S = 3(-1)$$

$$S = -3$$

Product of roots

$$P = (3\omega) (3\omega^2)$$

$$P = 9\omega^{3}$$

$$P = 9(1) \quad (\because \omega^{3} = 1)$$

$$P = 9$$

Hence the required equation is

$$x^{2} - Sx + P = 0$$

$$x^{2} - (-3)x + 9 = 0$$

$$x^{2} + 3x + 9 = 0$$

Using synthetic division, find the (ix) remainder and quotient when

$$(x^3 + 3x^2 + 2) \div (x - 2)$$

Solution: As x - 2 = 0

Now write the coefficients of dividend in a row and x = 2 on the left side.

$$\begin{array}{c|ccccc}
 & 1 & 3 & 0 & 2 \\
\hline
 & 2 & \downarrow & 2 & 10 & 20 \\
\hline
 & 1 & 5 & 10 & 22 \\
\hline
 & Quotient Q(x) = (x^2 + 5x + 10) \\
Remainder & = 22
\end{array}$$

(x) Using synthetic division, show that x-2 is the factor of x^3+x^2-7x+2 .

Solution: Write the coefficients of dividend in a row and x = 2 on the left side.

As remainder is zero, so by synthetic division x-2 is factor of $x^3 + x^2 - 7x + 2$

Find the sum and product of the roots of the equation $2px^2+3qx-4r=0$

Solution:
$$2px^{2} + 3qx - 4r = 0$$

$$ax^{2} + bx + c = 0$$

$$a = 2p, b = 3q, c = -4r$$
Sum of roots = $S = \frac{-b}{a} = \frac{-3q}{2p}$

Product of roots = P =
$$\frac{c}{a} = \frac{-4r}{2p}$$

P = $\frac{-2r}{p}$

(xii) Find
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 of the roots of the

equation $x^2 - 4x + 3 = 0$

Solution: $x^2 - 4x + 3 = 0$

$$ax^2 + bx + c = 0$$

$$\Rightarrow$$
 a=1, b=-4, c=3

If α and β are roots of the given equation then

Sum of roots =
$$\alpha + \beta = \frac{-b}{a} = \frac{-(-4)}{1} = 4$$

Product of roots $= \alpha \beta = \frac{c}{a} = \frac{3}{1} = 3$

Given that
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\beta^2 \alpha^2}$$
$$= \frac{\alpha^2 + \beta^2}{(\alpha \beta)^2}$$
$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha \beta)^2}$$
$$= \frac{(4)^2 - 2(3)}{(3)^2}$$
$$= \frac{16 - 6}{9}$$
$$= \frac{10}{9}$$

(xiii) If α , β are the roots of $4x^2 - 3x + 6 = 0$ find

(a)
$$\alpha^2 + \beta^2$$
 (b) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (c) $\alpha - \beta$

Solution:

$$4x^{2}-3x+6=0$$

$$ax^{2}+bx+c=0$$

$$a = 4, b = -3, c = 6$$

 \Rightarrow a=4,0=-3,c=0

As α and β are roots of the equation

Sum of roots
$$= \alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{4} = \frac{3}{4}$$

Product of roots =
$$\alpha\beta = \frac{c}{a} = \frac{6}{4} = \frac{3}{2}$$

Now

(a)
$$\alpha^2 + \beta^2$$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)$$

$$= \left(\frac{3}{4}\right)^{2} - 2\left(\frac{3}{2}\right)$$

$$= \frac{9}{16} - 3$$

$$= \frac{9 - 48}{16}$$

$$= \frac{-39}{16}$$

(b)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
$$= \frac{\alpha^2 + \beta^2}{\alpha\beta}$$
$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
$$= \left[(a + b)^2 - 2ab \right] \div \alpha\beta$$
$$= \left[\left(\frac{3}{4} \right)^2 - 2 \left(\frac{3}{2} \right) \right] \div \frac{3}{2}$$
$$= \left(\frac{9}{16} - 3 \right) \times \frac{2}{3}$$
$$= \left(\frac{9 - 48}{16} \right) \times \frac{2}{3}$$
$$= \frac{-39}{16} \times \frac{2}{3}$$
$$= \frac{-13}{8}$$

(c)
$$\alpha - \beta$$
$$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$$
$$\sqrt{(\alpha - \beta)^2} = \sqrt{\alpha^2 + \beta^2 - 2\alpha\beta}$$
$$\alpha - \beta = \sqrt{\alpha^2 + \beta^2 + 2\alpha\beta - 2\alpha\beta - 2\alpha\beta}$$
$$\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$
$$= \sqrt{\left(\frac{3}{4}\right)^2 - 4\left(\frac{3}{2}\right)}$$

$$= \sqrt{\frac{9}{16} - 6}$$

$$= \sqrt{\frac{9 - 96}{16}}$$

$$= \sqrt{\frac{-87}{16}}$$

$$= \frac{\sqrt{-87}}{4}$$

(xiv) If α , β are the roots of $x^2 - 5x + 7 = 0$, find an equation whose roots are

(a) $-\alpha, -\beta$

(b)
$$2\alpha$$
, 2

Solution:

$$x^{2} - 5x + 7 = 0$$

$$ax^{2} + bx + c = 0$$

 \Rightarrow a = 1, b = -5, c = 7

Sum of roots = S =
$$\frac{-b}{a} = \frac{-(-5)}{1} = 5$$

Product of roots = $P = \alpha\beta = \frac{c}{a} = \frac{7}{1} = 7$

Now if roots are $-\alpha$, $-\beta$

(a) Equation with the roots $-\alpha$, $-\beta$

Sum of roots =
$$S = (-\alpha) + (-\beta)$$

$$S = -(\alpha + \beta)$$

$$S = -(+5)$$

$$S = -5$$

Product of roots = $P = (-\alpha) (-\beta)$

$$P = \alpha \beta$$

$$P = 7$$

So required equation

$$x^2 - Sx + P = 0$$

$$x^2 - (-5)x + 7 = 0$$

$$x^2 + 5x + 7 = 0$$

(b) The equation with the roots 2α , 2β

Sum of roots =
$$S = 2\alpha + 2\beta$$

$$=2(\alpha+\beta)$$

$$= 2(5)$$

$$= 10$$

Product of roots = $P = 2\alpha \times 2\beta$

$$=4\alpha\beta$$

$$=4(7)$$

$$= 28$$

So required equation is:

$$x^2 - Sx + P = 0$$

x^2	 10x	+	28	=	0
$\boldsymbol{\Lambda}$	 $IU\Lambda$		20	_	v

Q.3:Fill in the blanks

- i. The discriminant of $ax^2+bx+c=0$ is
- ii. If b^2 -4ac=0 then roots of $ax^2+bx+c=0$ are
- are____. iii. If $b^2-4ac > 0$ then roots of $ax^2+bx+c=0$ are____.
- iv. If $b^2-4ac<0$ then the root of $ax^2+bx+c=0$ are____.
- v. If b^2 -4ac>0 and perfect square, then roots of ax^2 +bx+c= 0 are____.
- vi. If b^2 -4ac>0 and not perfect square, then roots of $ax^2+bx+c=0$ are____.
- vii. If α , β are the roots of $ax^2+bx+c=0$, then sum of the roots is
- **viii.** If α , β are the roots of $ax^2+bx+c=0$, then product of the roots is
- ix. If α , β are the roots of $7x^2-5x+3=0$, then sum of the roots is _____.
- **x.** If α, β are the roots of $5x^2+3x-9=0$, then product of the roots is_____.
- **xi.** For a quadratic equation $ax^2+bx +c = 0$ $\frac{1}{\alpha\beta}$ is equal to_____.
- xii. Cube roots of unity are _____.
- xiii. Under usual notation sum of the cube roots of unity is_____.
- **xiv.** If 1, ω , ω^2 are the cube roots of unity, then ω^{-7} is equal to _____.
- **xv.** If α, β are the roots of the quadratic equation, then the quadratic equation is written as _____.
- **xvi.** If 2ω and $2 \omega^2$ are the roots of an equation, then equation is ______.

$ \begin{array}{c} 9 \\ 5 \\ 5 \\ 3 \\ 4 \\ 1, \omega, \omega^{2} \\ 1, \omega, \omega^{2} \\ (\alpha + \beta) x + \alpha \beta = 0 \\ x^{2} + 2x + 4 = 0 \end{array} $
$ \begin{array}{c} 5 \\ 7 \\ -5 \\ 5 \\ 1, \omega, \omega^2 \\ 1, \omega, \omega^2 \\ 1, \omega, \omega^2 \\ \frac{c}{1, \omega, \omega^2} \end{array} $ $ \begin{array}{c} \frac{a}{x^2 - (\alpha + \beta)x + \alpha\beta = 0} \\ x^2 - (\alpha + \beta)x + \alpha\beta = 0 \end{array} $
We will be a second of the sec
iv. Rate Rate vii. Viii. Viii.