MISCELLANEOUS EXERCISE - 4

Q. 1 Multiple Choice Questions:

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

- 1. $(x+3)^2 = x^2 + 6x + 9$ is
 - (a) a linear equation
 - (b) an equation
 - (c) an identity
 - (d) none of these
- $\frac{2x+1}{(x+1)(x-1)}$ is 2.
 - (a) an improper fraction
 - (b) an equation
 - (c) a proper fraction
 - (d) none of these
- $\frac{x^3+1}{(x-1)(x+2)}$ is 3.
 - (a) a proper fraction
 - (b) an improper fraction
 - (c) an identity
 - (d) a constant term

4. A fraction in which the degree of numerator is less than the degree of the denominator is called

- (a) an equation
- (b) an improper fraction
- (c) an identity
- (d) a proper fraction

A function of the form $f(x) = \frac{N(x)}{D(x)}$, 5.

with $D(x) \neq 0$, where N(x) and D(x)are polynomials in x is called

- (a) an identity
- (b) an equation
- (c) a fraction
- (d) none of these
- The identity $(5x + 4)^2 = 25x^2 + 40x + 16$ 6. is true for
 - (a) one value of x
 - (b) two values of x
 - (c) all values of x
 - (d) none of these

7. A fraction in which the degree of the numerator is greater or equal to the degree of denominator is called

- a proper fraction
- (b) an improper fraction
- (c) an equation
- (d) algebraic relation
- Partial fractions of $\frac{x-2}{(x-1)(x+2)}$ are

of the form

- (a) $\frac{A}{x-1} + \frac{B}{x+2}$ (b) $\frac{Ax}{x-1} + \frac{B}{x+2}$ (c) $\frac{A}{x-1} + \frac{Bx+C}{x+2}$ (d) $\frac{Ax+B}{x-1} + \frac{C}{x+2}$
- Partial fractions of $\frac{x+2}{(x+1)(x^2+2)}$

are of the form

- (a) $\frac{A}{x+1} + \frac{B}{x^2+2}$
- (b) $\frac{A}{x+1} + \frac{Bx+C}{x^2+2}$
- (c) $\frac{Ax+B}{x+1} + \frac{C}{x^2+2}$
- (d) $\frac{A}{x+1} + \frac{Bx}{x^2+2}$

10. Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are

of the form

- (a) $\frac{A}{x+1} + \frac{B}{x-1}$
- (b) $1 + \frac{A}{x+1} + \frac{Bx + C}{x-1}$
- (c) $1 + \frac{A}{x+1} + \frac{B}{x-1}$
- (d) $\frac{Ax+B}{(x+1)} + \frac{C}{x-1}$

ANSWER KEY

1.	С	2.	С	3.	b	4.	d	5.	С
6.	С	7.	b.	8.	a	9.	b	10.	С

Q. 2 Write short answers of the following questions:

(i) Define a rational fraction.

An expression of the form $\frac{N(x)}{D(x)}$ with $D(x) \neq 0$

and N(x) and D(x) are polynomials in x with real coefficients, is called a rational fraction. Every fractional expression can be expressed as a quotient of two polynomials.

(ii) What is a proper fraction?

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called a proper fraction if degree of the polynomial N(x) in the numerator is less than the degree of the polynomial D(x) in the denominator.

(iii) What is an improper fraction?

A rational fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$ is

called an improper fraction if degree of the polynomial N(x) is greater or equal to the

degree of the polynomial D(x) e.g $\frac{x^2+1}{x-1}$

(iv) What are partial fractions?

Every proper fraction $\frac{N(x)}{D(x)}$, with $D(x) \neq 0$

can be resolved into an algebraic sum of components fractions. These components fractions of a resultant fraction are called its partial fractions.

(v) How can we make partial fractions

of
$$\frac{x-2}{(x+2)(x+3)}$$
?

Solution: $\frac{x-2}{(x+2)(x+3)}$

Let $\frac{x-2}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$(i)

Multiplying both sides by (x+2)(x+3), we get

x - 2 = A(x + 3) + B(x + 2) (ii)

As both sides of the identity are equal for all values of x,

Put x + 2 = 0 i.e x = -2 in equation (ii), we get

$$-2 - 2 = A (-2+3)$$

$$-4 = A$$

$$\Rightarrow A = -4$$

Now put x+3=0 i.e x= -3 in equation (ii) we get -3 - 2 = B (-3 + 2) -5 = -B $\Rightarrow B = 5$

$$\Rightarrow \boxed{B=5}$$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x-2}{(x+2)(x+3)} = \frac{-4}{x+2} + \frac{5}{x+3}$$

(vi) Resolve $\frac{1}{x^2-1}$ into partial fractions.

Solution:
$$\frac{1}{x^2-1} = \frac{1}{(x-1)(x+1)}$$

Let
$$\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$
(i)

Multiplying both sides By (x - 1)(x + 1), we get

$$1 = A(x + 1) + B(x - 1)$$
(ii)

As both sides of identity are equal for all values of x

Putting x-1=0 i.e x = 1in equation (ii) we get

$$1 = A(1+1)$$

$$1 = 2A$$

$$\Rightarrow$$
 $A = \frac{1}{2}$

Putting x+1 = 0 i.e x = -1 in equation (ii) we get

$$1 = B(-1 - 1)$$

$$1 = -2B$$

$$\Rightarrow$$
 $B = -\frac{1}{2}$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{1}{x^2-1} = \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(vii) Find partial fractions of
$$\frac{3}{(x+1)(x-1)}$$

Solution:
$$\frac{3}{(x+1)(x-1)}$$

Let
$$\frac{3}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$$
....(i)

Multiplying both sides by (x+1)(x-1), we get

$$3 = A(x-1) + B(x+1)....(ii)$$

As both sides of the identity are equal for all values of x.

Put x + 1 = 0 i.e x = -1 put in equation (ii) we get 3 = A(-1-1)

$$3 = -2A$$
 \Rightarrow $A = \frac{-3}{2}$

Now put x - 1 = 0 i.e x = 1 in equation (ii) we get

$$\Rightarrow$$
 3 = B (1 + 1)

$$3 = 2B \implies B = \frac{3}{2}$$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{3}{(x+1)(x-1)} = \frac{-3}{2(x+1)} + \frac{3}{2(x-1)} = \frac{3}{2} \left(\frac{1}{x-1} - \frac{1}{x+1} \right)$$

(viii) Resolve $\frac{x}{(x-3)^2}$ into partial fractions.

Solution:
$$\frac{x}{(x-3)^2}$$

Let
$$\frac{x}{(x-3)^2} = \frac{A}{x-3} + \frac{B}{(x-3)^2}$$
....(i)

Multiplying both sides by $(x-3)^2$, we get

$$x = A(x-3) + B$$
(ii)

As both sides of the identity are equal for all values of x,

Put x - 3 = 0 i.e x = 3 in equation (ii) we get

$$3 = B$$

$$\Rightarrow B = 3$$

Now comparing the coefficients of x, we have $\Rightarrow A = 1$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x}{(x-3)^2} = \frac{1}{x-3} + \frac{3}{(x-3)^2}$$

(ix) How we can make the partial fractions of $\frac{x}{(x+a)(x-a)}$?

Solution:
$$\frac{x}{(x+a)(x-a)}$$

Let
$$\frac{x}{(x+a)(x-a)} = \frac{A}{x+a} + \frac{B}{x-a}$$
(i)

Multiplying both sides by (x + a) (x - a), we get

$$x = A(x-a) + B(x+a)$$
(ii)

As both sides of the identity are equal for all values of x,

Put x + a = 0 i.e x = -a put in equation (ii) we get -a = A(-a - a)

$$-a = -2a A$$

$$\Rightarrow A = \frac{-a}{a}$$

$$\Rightarrow \qquad \boxed{A = \frac{1}{2}}$$

Now put x - a = 0 i.e x = a in equation (ii) we get

$$a = B(a+a)$$

$$a = 2aB$$

$$\Rightarrow$$
 B = $\frac{a}{2a}$

$$\Rightarrow$$
 $B = \frac{1}{2}$

Putting the value of A and B in equation(i) we get required partial fractions.

$$\frac{x}{(x+a)(x-a)} = \frac{1}{2(x+a)} + \frac{1}{2(x-a)}$$
$$= \frac{1}{2} \left(\frac{1}{x+a} + \frac{1}{x-a} \right)$$

(x) Whether $(x+3)^2 = x^2 + 6x + 9$ is an identity?

Answer:

Yes $(x+3)^2 = x^2 + 6x + 9$ is an identity because it is true for all the values of x.